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Scaling for interfacial tensions near critical endpoints
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Parametric scaling representations are obtained and studied for the asymptotic behavior of interfacial ten-
sions in thefull neighborhood of a fluidor Ising-typg critical endpoint, i.e., as a functidsoth of temperature
and of density/order parameter chemical potential/ordering field. Accurat@nclassical critical exponents
and reliable estimates for thmiversal amplitude ratioare included naturally on the basis of the “extended de
Gennes—Fisher” local-functional theory. Serious defects in previous scaling treatments are rectified and com-
plete wetting behavior is represented; however, quantitatively small, but unphysical residual nonanalyticities on
the wetting side of the critical isotherm are smoothed out “manually.” Comparisons with the limited available
observations are presented elsewhere but the theory invites new, searching experiments and simulations, e.g.,
for the vapor-liquid interfacial tension on the two sides of the critical endpoint isotherm for which an amplitude
ratio —3.25+0.05 is predicted.
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I. INTRODUCTION AND SCALING THEORY facial or surface tensionsrhen, in the presence of the vapor

Consider, for concreteness, a binary liquid mixture con-% the two phaseg and y merge into the homogeneous
sisting of two speciesA and B. For a full thermodynamic PhaseBy, or vice versds,6]. In Fig. 1(a one may follow the
description, one needs three field variables, ¢fyh,g)  triple line and its smooth extension on thesurface, beyond
[1,2]. The ordering fielch is conjugate to the order param- the critical endpoint, or, in Fig. (b), simply trace the line
eter, M. For fluids, the order parameter mép leading or- 9,(T). The “critical surface tension” between the coexisting
den be taken as the number density=p—po(T,g) mea- Phases vanishes below the critical endpoint temperafire
sured relative to a coexistence valpgT,g). Alternatively, =Te @S
M could be a composition variable such as mole fraction
difference, a volume fraction difference, and so forth. For the ~ ke ot (T _ F=
nonordering fieldy, one may take the pressure, or the chemi- pAT) KIt#, t=(T-T/Te—0-, (h=0),
cal potential of one species, eith&ror B, etc. (1.9

Figure Xa) illustrates a typical phase diagram in the

three-dimensional field spag2]. At any point on the surface \yhere, via standard scaling relatiofis5,8—10, the critical
labeledh=0, the system exhibits phase separation into tWQaxponent is given by.=2-a—v so thatu = 1.26 for typical,
coexisting phaseg and y, rich in A andB, respectively. We  three-dimensional fluids. The amplitulehas dimensions of

will adopt the convention that the phase has the higher energy per unit area where, here and below, we adhere to the
(mas$ density and hence sits at the bottom of a containepgtation set out in the Appendix of R48]. The “noncritical
when a gravitational field is present: see the msgt in F'gtensions,”Ea‘ﬁy and3., 5, should behavgl, 5], after subtrac-
1(a). By increasing temperature while keeping=h tion of a suitable, nonsingular common backgroubg(T),
—ho(T,g)=0, the state point will reach the linewhichisa as
locus of critical points,T.(g). Further temperature increase
results in mixing of the8 and y phases into a single phase,
sayBv. On the other hand, decreasigat fixedT<T,(g) on ﬂ

the h=0 surface leads to a triple-point line, at which ap-
pears a new, noncritical or “spectator” phas&hich repre-
sents the common vapor of the liquid phaggsy, andBy: riple
see the inset in Fig.(&). A first-order transition, between the  liret
vapor and the liquid phases, occurs across the vapor-pressu
surface labeledr which meets thén=0 surface at the triple
line. The critical line\, and the triple point liner, terminate
at a point(T,,0,9e): that is the “critical endpoint.” @
Recent field-theoretic renormalization group theory has
confirmed explicitly that the critical behavior at a critical  FIG. 1. (8) Phase diagram of a binary liquid mixture in the
endpoint is the same as on the critical lo§8gl]. Neverthe-  three-dimensional field spac&,h,g): see text for detailgb) Sec-
less, further, new bulk thermodynamic singularities do apdion of the phase diagraga) containing the plana=0. The critical
pear at a critical endpoift—7]. endpoint(Te,ge), is where the critical line. terminates at the first-
Beyond the bulk, however, there are singularitieier-  order transition lineg,(T).

A critical line

®)
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A ~K't* t—0+, (h=0), 1.2 Wid_om [14]. In fact, th_ere is just a single funct!on of two
Zalpy i - ( ) (1.2 variables AX(t,h), that is to be sought once a suitable back-
B - ground,(t,h) is subtracted from the total surface tension,
ASp=KTt*, t—0-, (h=0-), (1.3 say3.,.(t,h). Furthermore, in the first instance our main con-
cern must be with the singular, critical behavior which we
BeneathT. the y phase coexists with the and 3 phases and, may conflde_ntly expect to be described in scaling form so
in a sealecd c07r/1{'3ainer, it sits below tt@phas[eg F())Wing to its that A3/[t]* is related un|versall)(for~d<4) to the scaled
presumed heavier density. Now consider, hypotheticallycombinationM/|t|” or, equivalently, tdh/|t*, where, in stan-
bringing into contact the two phasesand y, neargy criti-  dard notationA=g+y=p0. o
cality; this produces a new interface. The corresponding non- Three decades after the development of renormalization
critical surface tensiot,, can be obtained from Antonow's 9roup theory one might expect this problem to be susceptible

which relations serve to define the amplitudés and K.

rule [1] which states o to such an approach. Unfortunately, however, the still re-
maining difficulties, both technical and conceptual, are pro-
S T) =2 5(T) + 2 (T). (1.4 found despite the progress reported, for example, in the re-

iew articles by Abraham, by Diehl, and by Jasnow in Ref.
49] and subsequent developmegeme of which are refer-
heémed in further detail belopwAccordingly we report here on
calculations based olocal functional theoriegyoing back
historically to van der Waals’ analysis of the critical surface

peratures, specifically below a wetting temperaflife) tension EIB‘YECT;I ﬁpecifi(;:al\jly, Vge [i]iCk (lij anddd_evelop_ the

Using the classical van der Waals or Cahn-Hilliard theorypmpoSas of Fisher and ptab] who advanced, in particu-
[11] and a model free energy of the Landau-expansion type'?r’ the EdGF.theory .Wh'Ch can consistently emb_ody the cor-
Widom [12] has studied various properties of the noncritical ¢t nonclassycal critical point exponents, especiaily 0.
interfaces, such as that betweanand B, near the critical _S“_Ch theories rely on the aval_lablllty of_an accurate de-
endpoint. Later, nonclassical critical exponents were embodscr'pt'_ﬁn ofktherl])ulkthermooLynhamlc prop_er';les. Tlo 'ghat fend
ied into the local free energy expression via postulated scal® Wil make heavy use of thparametric formulationo
ing forms[10]. However, the original theory of Widom and scaling theory in the neighborhood of a pulk critical point as
Ramos-GomeZ£10] led to an unexpected type of correction extended to_ represent the true cc_>rre_|at|on I(_angm,T,_h), )
in the surface tension, namely|ti term: this ismore singu- and so pro_wde a bas!s for calculating interfacial tensions via
lar than the nonanalytic leading terft¥* whenever the spa- local functional theorie$6,8,9. For completeness and ease
tial dimensionality,d, exceeds 3% [5,6] which cannot be of reference we recall the basic parametric expressions here.
considered accept,ai)le. ’ As standard, one first has

Fisher and Uptor{5] pointed out that, near the critical
endpoint, the amplitude ratios

P=(K'+K)/K, Q=K'/K", (1.5  wherek(#) is an even function of the “angular” variable
with ky=k(0)=1 andk(x6.,)=0 so thatd =+ 6. corresponds
to the critical isothermT=T,, while |(#) andm(6) are odd,
_ _ with 1(0)=m(0)=0 and I(£6;)=0 with m(¢,)>0 so that
P=- %(V"Z -1)=-0.20710..., Q=-\2, (1.6 0=+ 0, describes the coexistence surfate0 beneathT:
see Fig. 2 off9].

For general thermodynamic purposes, however, it proves
more effective to avoid integrating the equation of state to
'obtain the free energy; accordind®, we opt to treah [and
[(0)] as derived from the singular part of the reduced Helm-
holtz free energy which may be written in scaling form as

This relation can be derived by supposing that the thre
phasesy, B, and y can coexist and meet with nonzero con-
tact angles, and then by letting the contact angle between t
interfacesa| 8 and 8|y go to zero[1]. (It should be recalled,

however, that Antonow’s rule typically fails at lower tem-

t=rk(6), h=r?1(6, M=rm(6), (1.9

should beuniversal They reported mean-field calculations
[5,6,1Q yielding

which should be valid fod>4. However, to obtain more
realistic values ford=3, Fisher and Uptoi5,6] presented
preliminary calculations using an extended de Gennes
Fisher(EdGH local functional theory6] for fluid interfaces
combined with a simple “interpolated linear model” for the
equation of statgéas described in Ref9]). This approach
provided the significantly different estimates

P=0.1, Q=-0.83. (1.7
More recently, the EdGF theory has also been applied o here, following[9], we can write

A(t,M) =r#n(0), (1.9

critical adsorption problemgl3]. M
Our aim here, apart from estimating these universal ratios n(o) = r‘2+“sing{f h(M’;T)dM’}, (1.10
more precisely, is to calculate the noncritical surface tension Mg

in nonzero ordering fieldi.e., A, 5, AY,5 andAZ,, as a

function of t and h (or the order parameteM), on thes  in which the operation sifg} extracts only the leading sin-
surface in thefull vicinity of a critical endpoint. This is a gular part whileMz<0 is a fixed reference value: see also
basic problem of interfacial thermodynamics first broached?2.1) below. One then finds that6) is readily expressed in
experimentally in pioneering work by Nagarajan, Webb, anderms ofk(6) andn(6): see Eq(4.4) of [9].
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The generalized local functional theories proposeg6in  [15] measured the critical surface tensi@n, and Greer
also require the true correlation lengéh(T,h), which speci- [16] measured densities on the coexistence curve. The two
fies the exponential decay of correlatiofis the presumed latter experiments can be used to provide a consistency
absenceof long-range power-law or van-der-Waals-type in- check and calibration of the NWW daa7]. Other mixtures
teractiony. The corresponding scaling form can be writtenhave also been examined. Quasi-binary mixtures of
[9] n-octadecane ang-nonadecane in ethane have been studied

5 _ by Pegget al. [18] to measure the surface tensions through
E2x=1""a.(0), (1.1)  and near both the upper and the lower critical endpoints. The
surface tension of the water and 2,5-lutidine system at and
| off the critical composition has been measured by Anera
I. [19]. For a similar mixture of water and 2,6-lutidine,
ainzer-Althof and Woermann determined the valuesPof
andQ experimentally{20]. Interfacial tensions of the critical
mixture of 2-butoxyethanol and water have been measured
by Ataiyan and Woermanii2l]. The applications of the
present theory to these various data will be presented else-
where[22].

The rest of this article proceeds as follows. In Sec. Il, we
review briefly the classical theory of interfaces. The con-
struction of more general local free energy functionals is
taken up in Sec. lll. Following Fisher and Upt$h,6] we
work out the details of the extended de Gennes-Fisher
(EdGH ansatz and obtain formulae for the equilibrium order
parameter profile and the surface tension. The hypothesis
that the noncritical vapor phagecan be replaced by a wall
with a surface fielch, [5,6] is introduced in Sec. IV. In the

where y=(dM/dh); is the reduced compressibilitypr sus-
ceptibility) while » andv are the standard correlation critica
exponents. It is worth stressing that an essential feature
the generalized local functional theorié] is to provide in a
consistent way forp>0 since this is vital for the accurate
description of real and realistic model systems when4.
The local functional theories, if they are to yield compu-
tations for theinterfacial tension also require thatd{(M,T)
and £2/2y are well definedthrough the two-phase region
below T, where|M| is less thanViy(T) = BJt|#, the order pa-
rameter at coexistender, in magnetic terms, the spontane-
ous magnetizationWhile this is most certainly questionable
from a rigorous viewpoint, one may in practice construct
trigonometric formdor k(6), m(6), n(6), etc., which extrapo-
late smoothly(and, indeed, analyticaljyto |6> 6, and so
through the two-phase region: sg&8,9. In such cases we
takek(6), m(6), etc., as smooth periodic functions, of appro-
priate parity, in the interval 6,< < ‘?0 where 6, then cor- scaling limithy/|t|*1— —o (whereA, is the appropriateur-
responds th=M :Onfor T<T.. On this framework an “ex- 5.6 critical exponent there appear terms in the total wall
tended sine model” has been built and fitted to reliablggngion that diverge although remaining analytict.imfter
estimates of critical exponents and amplitude ratios for the,piracting these divergent terms, we can express the finite
(d=3)-dimensional Ising mode[9]. The resulting scaling  gjngylar part of the surface tension near a critical endpoint
funct|ons.v_V|II be use_d here to study the interfacial tens'on%xplicitly in parametric scaling form. In Sec. V these expres-
near a critical endpoint. , _ sions are evaluated numerically fd=3. However, an un-
In the scaling region the singular part of the full interfa- physical although quite smatluspis uncovered in the basic
cial tension can consequently be written parametrically as scaling functions(6) in (1.12. Its origin is discussed and
AS(t,h) = r#s(6), (1.12 found to reside_ in a fairly subt_le deficiency of the EdGF
scheme. By using an interpolation scheme, the cusp can be
and our basic task is to calculate the angular surface tensi@moothed out leading to acceptable approximations for the
function s(6). Note thatAX representsi) AZ 5, when |6 universal scaling functionS.(x) in (1.13. On this basis vari-
<48, (i) AX, 53 when 6.< < 6,, and(iii) A%, when -,  ous concrete numerical results are presented in Sec. VI for
< 6f=<-6, in accordance with Fig. 1 and the notation ex-the surface tensions in the vicinity of a critical endpoint.
plained above. Oncg(6) is determined, the surface tension Section VI contains some brief concluding remarks.

can also be written in the standard scaling form
Il. LOCAL FUNCTIONAL THEORIES

AS ~ K|t]“s, (DN{]%), (1.13 FOR FLUID INTERFACES

where the universal scaling functid®.(x) can be readily A. The auxiliary free energy function

calculated(Note that, as customary, the subscrigtand — Let us consider various free energies that will be needed
stand fort=0 andt<0, respectively. The amplitudek and N discussing the local-functional theory of fluid interfaces in
D here are the nonuniversal metric factors needed for no® general way. LeA(M_,T) be the true equilibrium H_elm—
malization and to makg&,(x) and the argumeng, dimension- hOIt_Z free energy _den5|ty that preserves the approprlate_ con-
less. In the notation ] we takeD=C*/B andx=h, which vexity properties inM and T [23]. The free energy density

provided a convenient normalized variable in the analysis ofA‘(M ’T)_A“"a'(M T)/V can be obtained by integrating the
Ref. [9]. equation of state,

Experimentally, as mentioned, Nagarajan, Webb, and Wi- M
dom(NWW) [14] were the first to test theoretical predictions AM,T) = h(M")dM" + A(Mg, T), (2.1)
for the universal surface-tension scaling functions off lthe MR
=0 axis in their studies of mixtures of isobutyric acid and using a fixed reference valldg # 0: such a choice of refer-
water. For the same mixture, Howland, Wang and Knoblerence value guarantees no singularity actes®in A(Mg, T).
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In order to keep track of dimensions, we taldeas the den- W(M:T,h.) =AM, T) = h,M = min[A(M,T) - h,M] = 0.
sity difference(p-p.) from now on. M
Now let AT(M,T) be the Helmholtz free energy density in (2.7
the one-phase region and its presumed analytic continuati . I
into the r?mltiphasge regio[’6,8,q? The typical vgrt1 der Waals QPhUS'W(M :T.h.) va.mshes.at the equmbnum valqes b
loop, which does not respect the convexity, should appear ifP" @ll T andh.. and its leading term in the expansion about
the multiphase region oA’(M,T). The Maxwell construc- M= iS quadratic in(M—M..). Otherwise,W takes only posi-
tion applied toAT(M, T) repairs the convexityalthough this ~ tve values.
is, of coursead hog. Evidently, AM,T)=AT(M,T) outside
the multiphase region whild'(M,T)=A(M,T) inside. The
excess free energ’(M,T)—A(M,T) which is then always
nonnegative, serves in the local functional theories, to deter- It is helpful to review briefly the van der Waals theory of
mine the structures of the interfaces between the coexistingpterfaces which is a Landau-type classical thejdrl1,23.
phaseq24]. ssuming the existence of the local free energy
The conjugate free energy densityF(h,,T)  WIM(2);T,h.] that can be expanded in powers gf and
=Fa(h., T)/V, where the subscript denotes a bulk equi- T~ Tc. the van der Waals theory takes the local excess free-
librium quantity, may be obtained frod(M, T) via the Leg-  €nergy density functional as a sum of two terfh namely,

B. van der Waals theory

endre transform, L. (dM\?
Af[M(z)]:W[M(z)]+§JO<E), (2
F(h..;T) = min[AM,T) = h,,M], (2.2
M where J, (=£°/x) is a constant and is the perpendicular
“AM..T) = h.M.., 2.3 distance from the interface presumed to be flat. The square-

gradient term(dM/d2)?, accounts for spatial inhomogeneity
where M.,=M(T,h,) is the bulk equilibrium value of the in the simplest manner. The overall excess free energy is then
given by a volume integral akf(z). Translational invariance

order parameter. . .
The interfacial tension that we aim to calculate is the eX_parallel to the interface enables one to factor out the area in

cess free energy of a system in equilibrium created by one Otpefvolume mtegral SO that. the free energy per unit area, or
more interfaces. All local functional theories for interfaces>"" 2€ tension, can be written g

introduce an auxiliary free energW[M(2);T,h.] that re-

sembles the excess free energy(M) is always nonnegative 3[M(2)]= J dzAf[M(2)]. (2.9

and vanishes only when the profilgl(z), takes an equilib-

rium value of the order parameter corresponding to one oFunctional minimization oE[M] with respect tdVi(z) yields

the coexisting phased,, for the a phase M, for g, etc).  a differential equation for the equilibrium order parameter
Since the equilibrium values of the order paramdigy, profile M(z). To supply boundary conditions let us consider,
Mg, etc., are specified both Byandh,, the dependence of for example, a system containing two bulk equilibrium
the auxiliary free energy o and h, must not be over- phases wittM=Mg (or M_,)) andM,, (or M..,) located atz

looked. =-o and +», respectively. For convenienci,; andM,, can
Thus the auxiliary free energy functiof(M;T,h.) be taken equal in magnitude but opposite in siyh,>0).
needed in a local functional theory can be definedH¢] Then, near criticality the equilibrium order parameter profile
behaves likeM , tanh(z/ ¢) for the stated boundary conditions
W(M;T,h..) = AT(M,T) - h.M - F(h.,,T), (2.4  and the resulting surface tension is
M7 .
=AI(M,T) - AIM., T) - h.(M-M.), (2.5 2= dMV23WM). (2.10
B

where we have used’(M.)=A(M.). Since AT(M) repre-  With a suitable representation fo¥[M], one can also study
sents the analytic continuation #f(M), we may also use the critical and noncritical surface tensiofi9,12, as well
(2.1) to write as the critical wetting transitiof26]. However, this classical
square-gradient theorgannot satisfactorily embody all the
M correct critical exponents. This is because the square-
W(M;T,h.) :f h(M", T)dM’ -=h..(M -M.), (2.6)  gradient term in2.8), when the analysis is adapted to study
Mo the decay of correlationgather than just the overall interfa-
cial free energy always implies the exponent valug=0
because the equation of state must then equally have an an@at is valid only ford=4. Thus even upon using an equa-
lytic continuation: notice thaA(Mg,T) cancels out. From tjon of state that obeys scaling and embodies correct expo-
this one immediately finds thaW(M..;T,h.)=0 and nents(such as the extended sine model discusse@]n a
(0WI IM)y=y_=0. Starting fromAT(M,T)=A(M,T) and us-  square-gradient form for the local free-energy yields the clas-
ing (2.2 and(2.4) one obtains sical valuen=0 for the correlation function decg7].
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Ill. FISHER-UPTON THEORY FOR FLUID INTERFACES SAF[M(2)] f’ﬁ g A d ( 01,4)
Dt s 44 ===
In order to generalize the classical square-gradient theory, A 0 M dz\ gy
we start with the total free energy of the binary mixture
written in the form +6(2) dfy _ ﬁ 5M] + ﬁgM ,
dM sm M|
FtotaI(Tl hooag) r,\;](lr?f[M]y (31) (37)
i and hence finds
where F[M;T,h..] is a sought-for local free energy func-
tional. Assuming translational invariance along directions dA d[dA
parallel to the interfaces, we may simply tak&r)=M(2). M d_z(%) =0, 3.9
The solutionM(z) that minimizes the functionar[M] is the
equilibrium order parameter profile for the specifiédh,.,
and boundary conditions. We can suppose thE¥l] has a oA _dfy =0. and oA =0 (3.9
homogeneous part describing the uniform bulk phases and an M 0 dm; M = ' '

inhomogeneous pattF, so that .
However, sinced(M,M) has no explicitz-dependence, we

FIM(2)] = Fpu(T,h.,,g) + AF, (3.2 can integrateg3.8) to get the first-order differential equation
where Fy (T, h.,,0) is the bulk free energyand g is the AM,M) - Mﬁ =C, (3.10
third field: see Fig. 1 If there were no interfaces, we would M

have AF=0, andFy=Fpuk Following [6], we now con-

sider a general local free energy functional of the form " Which C'is a constant.

Now consider a fully infinite situation so that the lower
limit in (3.5 becomes = and the surface term drops out.
AF= f dr A(M,M:T,h..,g), (3.3y  Functional minimization again yield¢3.8), and thence
(3.10, while the first(wall) cqndition in(3.9) becomes sim-
] ply the bulk condition(d.A/M),-_.,=0.
whereM =dM/dz Without great loss of generality, we may  In the semi-infinite situation, the forig8.4) leads to
write [6] di
| | WMDIMYAMDG (AM)], o= &, (3.1
AM,M;T,h,,g) =WM)[1 +I(M)GAM)], (3.4 !
which is an equation determinirlg,. Similarly, the two bulk
whereJ and A are to be functions oM andT. The function  conditions yield
G(x) should be even since the signidf cannot matter in the

free energy. NowA should vanish whet =0 so thatAF oA =W(M,.)J(M.)A(M...)G'(AM,..) = 0
=0; this impliesG(0)=0. To determine other properties of oM e - h h b
G(x) we must proceed further. h (3.12

For semi-infinite cases where an external wall is located
at z=0, the postulate3.3) must be modified by adding a but sinceW(M,.,)=0 these conditions should hold automati-

boundary tern{28] cally provided thati(M.,.), A(M,..), andG'(AM,..) do not
AFIM] diverge. We will see below that these functions have nice
FIM] [~ - _ behavior so that we may forget the bulk conditions.
A _fo dzAM,M) + f1(My:hy), 3.9 Far away from the wall or the interfaces, in the infinite

and semi-infinite cases, one should see only the bulk behav-

whereA is the area of the interface. The surface fieJdacts ior of the system. Hence, it is natural to require

only atz=0 and is coupled tM;=M(z=0), the order pa-

rameter on the boundary. M@~ M., M@ -0, asld—e«. (313

Now let us minimize BecauseA(M..,,0)=0 the constant in the first integral
(3.10 must thus vanish. Then using the postul@e) one is
AF[M(2)] °° . led to
— =f d4.AM,M) +82f(M)] (3.6
A 0 Ay = LG (.14
§ IAMG ) |

with respect taM(z) where the boundary term has been ab-
sorbed into the integral. Then in the usual way, integrating bywhich represents a differential equation for the equilibrium
parts, one obtains profile Me(2).
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In order to devise appropriate expressions ij’M) The sta_rting point of the Fisher-Upton .the.ory is the de
which generalize the earlier de Gennes—Fisher thgpgy, ~ Gennes—Fish&dGF) ansat429] for T=T¢ which in the gen-
applicable only af=T,, Fisher and Uptofi6] introduced the ~ €ral expression3.4) is given by[5,6],
following desirable physical _featurg_s or desiderata: J=const, AM)=&M)M, G(X)= |x|2‘7’,

A. The correct, non-classical critical exponents should be
embodied, both il=2 and ind=3. Conversely, a reduction . ~_ -
to van der Waals or Landau theory should be implied when- with 7= 2y/(d*+ 7). (3.20
ever the classical critical exponents are assumed. ~ This form satisfies\—D andF(i). However, the dGF theory

B. Near the critical point, all thermodynamic functions applies onlyat criticality. The extension proposed by Fisher

should satisfy the scaling and analyticity requirements: irand Upton(EdGPH usesy(M,T)=(JM/dh); and postulates
particular, singularitiegor nonanalyticities should appear

only at bulk criticality, i.e., when=h=M_,=0. J=1, AM;T,h.Q) = V&M, T)2x(M,TIWM;T,h.).
C. For the semi-infinite system, the critical-point decay of (3.22)
the profile should behave in accordance with scaling as ] ] »
(29,30 In order to satisfyE, one finds that the condition
M2 ~ 27", (3.19 a(1)=1 with G =xG'(x) -G,
D. When two plates separated by a finite distahcare (3.22

immersed in a critical system, the order parameter deca
(3.15 should have a correction factor so that

M2 ~ZPL+j(@ZL)% + -], L—o, (3.16

whered*=(2-a)/v andj, is some coefficient. This predic-
tion of the de Gennes—Fisher thed®@] has been verified by with T=2B/I(B+v). (3.23

several analyses including exact Ising model calculations foE v, f lIx—0 th lidity of di .
d=2 [5,6] and field-theoretic calculations =4 -d dimen- inally, for smallx— 0 the validity of a gradient expansion,
sions[31-33. G, can be seen to requifé,6]

E. Away from criticality, the order parameter should al- GX) =X +GCxX*+Gp8+ -+ . (3.29
ways decay exponentially

AM(Z)=M(2)-M,, ~ €% 7z, (3.17

¥ust be satisfied. Also, in order to satidfy G(x) should
behave as

G(X) = G+ Gl X [L +1,X 7+ X 27+ -],

Using the EJGF postulai@.21) and the conditiori3.22),
the solution of the general profile equati@14) reduces to

where, clearly&(T,h) denotes thérue correlation lengthg,,  X=*1, or
but for brevity we yvill neglect the subscript. (Note again M= + 1AM), (3.25
that we are assuming the absence of power-law forces or the
likelihood that, if present, they do not enter explicitly into where the signs- must be chosen appropriately. Hereatfter,
the asymptotic scaling functions. we take the+ sign, for an increasing profile as— +o. The

F. For a finite critical slab, in the same situationlasthe  wall free energy then follows froni3.5) as
critical profile will exhibit aminimumfor similar boundary

conditions satisfyindVl(z=0), M(z=L) >0, or azerofor op- 3 =AF[M2/A=[1 +g(1)]f dz WM) + f;(M,),
posing boundary condition$1(z=0)>0 and M(z=L)<0 0
[34]. It is expected that this profile(z), behaves analyti- (3.26)

cally nearz=z, as
where (3.3), (3.21), and(3.25, and G(-x)=G(x) have been

PN RV
M2 =ky(z=2)"[1 +kp(z=29)"2+ -], (3.18  geqd. Using(3.25 once again, one can rewrite the semi-
whereF(i) \;=0 for the similar case, or;=1 for the oppos- infinite integral as

ing case;F(ii) for the further exponents, one should have Mo
)\2:2,)\4:4, etc. E:[l +g(1)] dM \/V(M)A(M)"’fl(Ml) (327)
G. Away from criticality a square-gradient expansion in My
the local free energy functional is _expected to be correct and nqw the thermodynamic consistency conditioh, leads
so should be reproduced by a satisfactory theory. 6]
H. To describe adsorption on a wall zt0, the theory
should be consistent with the thermodynamic relation 1+G(1)=2 or g=1. (3.29
(" _ (= It is remarkable that both the profile and the wall or interfa-
I'= fo AM(2)dz= - )y (319 (ial free energy3 (T, h), do not depend on the details &)
[6]. However, one must note that the EAJGF ansatz fails to
whereX, is the wall(or surface free energy. satisfyl in certain situation$6].
I. The order parameter profilé(z;T,h,g;L) should be In order to repair this last problem, a generalized de

analytic in all noncritical regiongCompare withB above) Gennes—Fisher ansazdGH was devised6]. It satisfies all
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of the desideratsA—I. However, in contrast to the EdGF T=[T-T/9))Te, 4.3
theory, the profile equation, the surface tension formulae,

etc., now depend ogi(x) explicitly. In order to obtain quan- while, for convenience, the _tilde dmnow denotes the fully
titative results, one must devise a representatiogfgy that ~ Scaled field and, for brevity, the phase boundary term,
reproduceg3.23 and an analogue @8.24. One can indeed Mo(T:9), will usually be neglected below. As usugs] B
achieve this; but the resulting calculations become consider=B(9) and C*=C*(g) are, respectively, the critical ampli-
ably more complicated than those for the EJGF theory. Aciudes of the spontaneous ordity(T,g) ~ BIt|”, and the sus-
cordingly we have explored numerically only the EdGF for- ceptibility, XS(T,g):(ﬁM/ah)TﬂcxC*/ty, on theh=0 sur-
mulation. face aboveT,(g).

It must be recognized, however, that both EdGF and Then, following([5,6], we can write the scaling form
GdGF theories ignore capillary-wave fluctuations of a free

interface, which are important fat<3 [5,6]. Also, as indi- £(M,T,9)/2x(M,T,g) = [M["7FZ, (), (4.9

cated above, the analytic continuations dMM), which is crucial in going beyond van der Waals or Landau

2 i .— i - - .
3 (M)/ZX(M)’. et_c., Into t_he mult pha}se region _ha_ve no square-gradient theory because it introduces the small but
known meaning in the strict sense of rigorous statistical me-

hanics. H t that both theor il brod (gositive (for d<4) exponenty. As above, the subscripts
¢ amcs.bl OW?.V%T we exlfec h a f't(t) dt eor'gz&’w pdrg UC&nd — will always denotef >0 or <0, respectively. How-
reasonably reflabie resuits when hitted 1o ex an ever, it must be realized here and below that the scaling
=4 results and good estimates for variailrs3 parameters,

. h bod ¢ phvsical feat functionsZ, andZ_ and, likewise, others are, in fact, repre-
since they em 0,y many correct pnysical features. sentations of asingle generally analytic scaling function
Indeed, Upton'ss=4-d expansion results for the univer-

N = o
sal amplitude raticQ=K*/K- [35] demonstrate this point continuing smoothly through=0. Thus, more explicitly, to

. . . ! " ici 2 h facB=T
quite well. Using the field-theoretic approach to sun‘ace_crm-f.a nsure the analyticity of*/ 2y across the surface=T(g) or

cal phenomena, he obtained the exaexpansionQ=-y2 t=0 (recall B) the scaling functionZ, must have largén
+1.521 252+ 0O(€?). Then, using the EAGF theory and the expansions of the form

linear parametric modéivhich is known to be exact to order *

€% [36,37), he foundQ=-2+1.522 96e+O(€?). The coef- Z.(m) = z;;’[ 1+, z;°(r|'m|'1’ﬁ)”] . (4.5
ficients of e differ by only 0.1%. n=1

WhenT— T,(g)+ the terms in the sum clearly generate only
IV. EAGF EXPRESSIONS FOR SURFACE TENSION NEAR the integral powerd " as required by analyticity wheM
A CRITICAL ENDPOINT #0.
. . . , o The correct analyticity is most conveniently incorporated
We now discuss in more explicit detail the application of b ;sing the parametric representations of the scaling func-
the EJGF theory sketched above to the vicinity of a criticalijong recalled in Sec. I. The only new features required near
endpoint. Allowing for a boundary term, which will be dis- 5 yitical endpoint are the replacement dy T, as defined in
cussed further below3.27) can be written as (4.3) and allowance for thésmooth dependence of the non-

M., universal factorsny=m(0) andl,=1(0) on the fieldg: see
3(T,h,g) = 2J dMAVW(M)E(M)/2x(M) + f1(M,), (1.8) and[38]. With this understanding the parametric forms
M, (1.8—1.10 will be adopted. Then one can express the coef-

(4.1) ficients entering4.5) as
© mip = vl
where the arguments, andT are understood an@.21) and Zo = 2. (6)[m(6;)] BeclMe) 77, (4.6
(3.28 have been used. N ,
- (MJB] B{&c n_vmc} @7
1~ ’ il .
A. Scaling forms ke 8 B M

To embody the appropriate nonclassical critical exponents 28 - o N\ 2
and satisfy the desiderafaandB we should, clearly, adopt 75 = [m‘?“?]z 201+ 7) A Me | MZ_M(%)
scaling forms for W(M;T,h,) and the combination 2[k:] B axcMm B me

2 i i i " 2V 7
&M ,T)/X-(M ,T). As_ discussed, the rqulred expressions al, al.k gr[mK
must continue analyticallgor, at least, sufficiently smoothly tr— =t == (4.8
into the two-phase regiofV| < M(T). We should also recall e Bucke  BAMK M

the necessity for including the further fiegdand the lambda where the prime denotes differentiation and for brevity we
line T=Tg): see Fig. 1. Followind9], we thus introduce have used,.=a’(6,), etc., and so on.
the dimensionless asymptotic scaling variables The required scaling form fon(M ; T, h,.) must be some-
_ what more elaborate because of the additional dependence
m=M/B[f|’, h=[h-hyT,9)//(BICH|F*, (4.2) on h,: see the original definitiori2.5). (Indeed, the result
presented in6] is somewhat misleading since the depen-
where the reduced temperature deviation is 6y dence orh,, was suppressed and the expressions given apply
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only for h,,=0.) Let us consider, first, the parametric repre-
sentation forW following from (2.6) with the aid of(1.10).
Note that specification of andh,, implies, via(1.8), para-
metric coordinates., and 6,. (for the corresponding bulk
phase while the variation ofM at constan andh., can be
described by coordinatesand 6. Thus from(2.6) and(1.8)
we obtain

W(r, 0;1..,6..) = r2=n(6) - r2*n(6.)

—r31(6)[rPm(6) - rPm(6.)]. (4.9

When t# 0, the relationt=rk(6)=r_k(6,) leads to the de-
sired form

W(M;T,h.,) = r2=*w(6; 6..), (4.10

where, withh,.=r21(6..) and(1.8) for M, we have

W(6; 6..) = n(6) = 1(6..)m(0)|K(0)/K(6..)|*
= [n(6..) = 1(0.)m(6.) ] k(B)/K(6..) [,

(4.11
while the singular part of the Helmholtz free enerxtended
into the two-phase regigras discussed above, is given by
(1.9 [39].

WhenT=T, we haved=6..= 6. andw(9; 0.,) simplifies to
yield

W = W(6; 6) = Bml /(2 - a), (4.12
,_ (dw _Bmdg - (1-B)lgm;
w, = ( da)(}:(}x:% = 1-a) . (4.13

Consequentlywv(8; 6.,) is continuous and smooth through
=T.(g) (or 6=6..=6.). However, the presence of the powers
of A and(2-a) in (4.11) shows that the curvatuke®w/d6?)

PHYSICAL REVIEW E71, 011601(2005

Ya(i;h.) = YG[1 £ Y[~ — sgr(M) Y[~/
Y5 [ 4 |28 £ G+ ],
(4.16

where the various coefficients are given explicitly by

Y3 = h./BoYG|tA, (4.17

Y;_, = [A*(h,) + (BYCHh,m.(h.) /B*LY;, (4.18

Y5 =nd(my)?*L, (4.19
1/8 ’ ’
Y‘fzﬂ{&—((ﬂl)%}, (4.20
ke Ne me
Yw:[mcfs]ﬂﬂ{_2(1—a>n_gg'+<ﬁ—a><1+a)<@'>2
20 2K B nem B m,
ng Nk mke me
+nC ncké+(1+5)(mcké mc)} (4.21)

wherem!=n1'(6,), etc.

B. Representation of the noncritical phase

The scaling forms just discussed provide a satisfactory
representation of the phasgsy, and By (see Fig. 1in the
vicinity of the critical line and critical endpoint, but they
seem to give no account at all of the noncritical or spectator
phase,a. To overcome this draw-back, Fisher and Upton
[5,6] advanced a hypothesi®,, which asserts that as regards
the singular contributions near a critical endpoint, the non-
critical phasex (typically a vapor wherB andy are liquidg
can be replaced by a rigid, inert wall, say characterized
only by a nonzero surface field; favoring, say, the bulk
critical phaseg.

If one accepts the hypothedil, one must consider a wall

is not continuous througi=T,(g). Nevertheless, this lack of at, say,z=0 with a corresponding wall free energy as intro-
analyticity of w(6; 6..) is not, of itself, expected to lead to gyced in (3.5 which, following a Landau approacf2s],
corresponding nonanalytic behavior in surface free energiesnay be expanded as
etc., since the underlying bulk free energies and correlation
lengths do vary analytically.

Now we can expresgV/ in the alternative scaling form

fi(My) =—h;My+ M2+ -+, (4.22

The boundary conditior§3.11) determiningM; can be re-
written for the EAGF theory using.22), (3.22), and(3.25

W(M;T,h.) = [M|*1Y,(f;h..) as

(4.14
df,

dMm,

If the surface field near bulk criticality scales &s
~[t|*1 when h; — 0, this relation leads td;=3(2-a—7v)
=u—B. However, it is known that the critical exponents for
surface quantities such &g and M, are characterized by
exponentsA,, B4, etc., thatcannotbe derived simply from
the bulk exponentp40-43. Hence the exponent relation im-
plied by (4.22 for small h; is not, in fact, valid. However,
this failure of the local functional theory is of no concern in
the present situation since we wish to keep the figlfixed

where, withA*(h..)=-n(6,,)/|k(6..)[>™, we have

= 2AWE2xT2w,- (4.23

Y..(f;h.) = A%(h..)[BR ™1 = h.[M = M..(T,h,)]M[*

o ].

[This reduces to the Fisher-Upton expressions wier: 0

for T>0 andi<0 although Eq.7) of [6], should be cor-
rected by changind+|y|)™# to read (z]y|*#)".] On rear-
ranging for|m| —« we have

1+ Yo ([ A"

n=1

(4.15
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and nonzeroHence the correct scaling combinatibg [t [~
divergeswhent— 0 and hencén, does not appear explicitly

in the asymptotic scaling forms. From our viewpoint, then, it

is only necessary to investigatarge |h,| and, correspond-
ingly, large|[M,|. In a more general formulation the phase
would be represented by an ex{fghird”) minimum in the
extended free-energy functioh’(M,t,g) at some valuev

=M,(t,g) with, say,M_,<0 corresponding to a vapor phase:

a fuller investigatior{5,6] then shows that the hypothedis

is justified within EAGF theory. Of course, the effective sur- M
face ordeM; does not become indefinitely large in this for- |, = ZJ
mulation: however for the singular behavior near the critical

endpoint we may imagine taking, to —», the negative sign
being chosen so that, as indicated, the demgjtgrf the vapor
phase lies below the critical densipy. (corresponding to
M =0) so that the wall fieldh, should induce a negative value

of M. This limit entails, as will now be discussed, the sub-

PHYSICAL REVIEW E1, 011601(2005

surface tension expressida.1) can be written

2(t,he;My) =11+ L+ 15(M*) = 13(My) + f1(My),
(4.25
where the various contributions follow from
M,
11=2 f dMIW(M)E(M)I2x(M)]H2,  (4.26)
M* <0

dm {{W(M)fz(M)/ZX(M)}m - (YoZg)VAM A

x{1+ H (4.27)

My
(Y7 +Z)t
2|m/B|YE

h../B°Yg
2|m/BJ?

My
/ -
traction of appropriate leading terms that would otherwisda(M1) = 2(YgZg)* zf dM|m[+A

appear as divergencies but which, in reality, contribute only

to noncritical “background” terms.

C. Implications of an unbounded surface field

To use the integral expressiof.1) for the surface tension
in the limit whereh; and, henceM; remain finite so that the
scaled variabléh~ M/|t|® becomes large near the wall at

=0 whent—0, we need to examine the integrand. When

|| — o we find

(M)
2x(M)

(YL +Zpt

2|m/B|YA
h /B‘5Y°° Y5_lt?

Sgr( ) (5‘ o+1
2|M/B|°  2|M/B|

[4(Y5 +Z5) = (Y5 = Z9)2]t?

8|M/B|?#
(Z7 - Y7)h,t/B%Y,
4/m/B|HE*o

(Z7=YDY Mt
o+ Om B
(4.24)

On integration the leading terfiv|“=A/¢ yields |M,|*/#
which diverges whei; — - sinceuw/B8>0. Similarly, the
second term yields a divergence whign—1)/8>0, which
applies whend>2. The third term givegM,|“2/# which
vanishes in the limitM;— - since u<A for d=3. How-
ever, wherd=4 it diverges as IM,|. Higher order terms do
not yield any divergencies whevi; — —o. Hence, to remove
the divergence in the integral whévi; — - for 2<d=<4,
the first three terms must be subtracted.

When M., >0 the integral in(4.1) runs throughM=0

1/2
[W(M) } IMI(“‘ﬁ>’B(Y§Z§)1’2{1

- sgr(M)

(YT+Z)t  h./BoYg
X1+ . 4.2
{ 2|M/B[YE  2|Mm/BJ° (4.29

The third, indefinite integral, which together withf;(M,)
contains all divergences in the limil; — —o, can be per-
formed analytically yielding

- _ oo\ 1/2 (= M)HB (Y°1°+Z°1°)Bllﬁt s
13(M) = - 2(YsZ3) { B + s (= M)
e J B =A), d<4 }
+2Y°°{ In[(- M)/Brf], d:4} . (429

where ford=4 we have made the argument of the logarithm
dimensionless and scale-free; this is harmless because the
extra InBr?) term amounts merely to an additive constant.

D. Singular part of the surface tension

Following the discussion, we now identify the finite, sin-
gular part of the surface tension as

A3(t,h,) = with I3=15(M*),  (4.30

where the limitM; — o in any remainingV;-dependence is
to be understood. Note, furthermore, that wieea 4, the
diverging parts that have been subtracted vary only linearly
with t. As mentioned, they may thus be regarded as a part of
the common analytic backgrounB(T), for the surface ten-
sion: seq1.2) and(1.3). In identifying A3, for d=4 there is
some unavoidable arbitrariness associated with the introduc-
tion of the I(Br?) term: but this is of little significance.
Finally, to employ the parametric representations, we
change the integration variable frokh to @ in the integrals
I, andl,. From(1.8), we have

M k(e)m'(6) — k' (6)m(6)
(50,00

*
L+ 1+ 1

which is problematical because the piece to be subtracted is

singular atM=0. To avoid this, we split the integral at an and on definingg* <0 via
arbitrary pointM* <0 and make the subtraction only in the M */|t]E = m(6* )/|k(6* )|?
integral fromM, to M*: of course, the values df1* should

not affect the final results. Finally, the subtracted form of thewe find

(4.32
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=

4o’ (6) - B (OHm(O)

I1:2sgrtt)|t|"f va,

i

(4.33
i k ’ _ k/
I, =2 sgrit)|t|* f de (O)m (|i)(0)ﬁ+l(0)m(0){\r'am(ﬁ)W(ﬂ)
_0‘:

N (Y1 +Z))k(0)
2|m(6)/B|Y¢

o0 A
MH w34

2|m(6)/B|°
wherew(6) is given by(4.11) (for fixed 6,.), while I3(M*)
can be written as

- (YgZg)Y3m( e)l**”“{ 1

B

B s sqri) (Y1 +Zy
w

0o\ 1/2] 1B(y * )~
20Y5Zg) 2t B A (y )‘{ 2(n- 1)

o, ]

where y* = [k(6*)|[-m(6*)/B] Y2 It is to be understood
that, belowT,, the integrall; must be interpreted aﬁf;f
:f;*90+fz§ since, by our periodic parametric construction,
0=+ 6, and 6=-6, are identified together witM =0.

These expressions fdg, 1,, and I; together with(4.30
for AX(t,h.) constitute our explicit results for the singular
part of the surface tension. Note thdt, the boundary value
of the profile on the wall that stands in for thephase, does
not enter these expressions. On the other hand the arbitra
value 6* does appear; however, the tot@HI2+I*3 should be
independent of* and this may be checked in explicit cal-
culations.

l3=-
Bly* ) M(uw-A4), d<4
Bly* ¥ In(k.)ly*), d=4

Ys
2

V. PARAMETRIC SCALING FUNCTION FOR d=3

PHYSICAL REVIEW E71, 011601(2005

d=3. Although divergent, this singularity is integrable and
can be handled by standard techniq{43.

As a check on the numerical calculations, it is useful to
recall the mean-field limit for which exact analytic results
can be obtained. Indeed, from the asymptotic classical equa-
tion of state, namely,

h(M,t) = DM(B% + M?) D = 1/B°C*,
(5.2
one can find the auxiliary free energy \i2.6) to obtain
W(M) = 5tB?D(M? = M) + 3D(M* = M) = h.(M - M..),
(5.2

in which M_,,=M(T,h,) is, of course, the appropriate bulk
equilibrium value. Using the EJGF formulation and taking
§2/2X:%J0 [see(2.8)], the critical surface tension can be
calculated analytically, yielding

with

Mq(T)
S4,=2 f dM[W(M) &2y ]+ = 2\23/B>C*M3(T),
-Mo(T)
(5.3
from which the amplitudéK defined in(1.1) is
K=2K, with  Kg=12J,BYC". (5.4)

Similarly, the amplitude«* for the noncritical surface ten-
sion can be calculated using the subtraction scheme dis-
cussed above; they are found to be

K'=-12K,, K =12K,,

(5.5

which values confirm the universal amplitude ratibandQ
stated in(1.6).

For the numerical results presented below we have used
the extended sine model expounded[®), specifically in
Egs.(5.6) and(7.4) with (6.1) and(4.4). The numerical pa-
rameter values fod=3 are given in Eqs(6.2) and(7.5) of
Hef. [9]. In light of more recent estimates for the critical
exponents and universal amplitude ratioslef3 Ising mod-
els [44-44, the model parameters should, ideally, be up-
dated. However, the resulting changes could induce only
rather small effects. Thus the new estimaies0.6302 and
v=1.2375[45] differ from the adopted values @] by only
0.16% and 0.28%, respectively. The universal amplitude ra-
tio estimatesf;/f;=1.963+8 andC*/C =4.762+8 [45]

In this section we examine the numerical results for theagree well with those used [8] lying within the uncertainty

parametric scaling functios( 6) introduced in(1.12) that fol-

ranges although their central values are shifted by 0.15% and

low from the EdGF surface tension expressions obtained i3.8%, respectively. Furthermore, it has been shown via

the previous section, specificali$.30) with (4.33—(4.35.

A. Numerical evaluation of the scaled tension

Now given the parametric angular functiok&), m(6),
etc., the numerical integration df in (4.33 can be per-
formed readily. However, there is an endpoint singularity in
[, in (4.34 at #=—0, where k(6) vanishes. On using the
expansion4.24) for [W&2/2x]*? one sees that the singular-
ity has the form|6-6,¢ with ¢p=1-a-u=v-1<0 for

parameter-sensitivity checks that the associated variations in
universal ratios are less than 5%j. Thus the accepted pa-
rameter values froni9] are perfectly reasonable for the nu-
merical aspects of the calculations reported here.

The computation may be set up to generate the mean-field
results applicable whed>4: see Appendix D of Refl17]
for the appropriate parameter values. Our numerical values
for the mean-field case agree up to eight digits and the lack
of any dependence off was verified.[For convenience the
values0* =-36,/4 for 0< 6,,< 6, and 6* =—(6,+ ;) /2 for
0.< 0,,< 6, were adopted17].] In d=3 dimensions the

011601-10



SCALING FOR INTERFACIAL TENSIONS NEAR CRITICAL ENDPOINTS PHYSICAL REVIEW E1, 011601(2005

4 6 |
@ 3r 1 ﬂ 5t S ersosesnsassrsnere st
g0 2} J oo 4}

) N
IS A

06 04 02 0 0.2 04 06 04 03 02 01 0 01 02 03 04

-6, -0, 0 0. 6, -6, -0, 0 0, 6,
FIG. 2. The angular scaling functiaé) for the surface tension FIG. 3. The calculated angular function for the surface tension

in d=4 dimensions as given by EdGF theory. Some significant nuin d=3 dimensions based on EdGF theory and the extended sine
merical values ar@.=0.562 345 and); =0.667 708 corresponding model[9]. The inset clearly shows a cuspét 6 (i.e., atT=T_ for

to s./09=3.120 23, s_;/09=-0.122 322, 5,/ 6,=0.976 225, and h,>0) with a corresponding valus./0¢=3.91731. The values of
s_1/33=0.325 408. Note alss(0)/ o9=-3.306 20[17]. s ands,4 are entered in Table I.

value of ¢ was varied from —0.05 to —0.26 for a sample A3(t,h,) = AS(h,) + A3 ,(h,,) ||+ 1+2
value of 6., near 6. no change ins(6) was found within

eight-digit precision. +AST(h [t 22 4+ o h, >0,

(5.8
B. Calculated scaling functions

Our calculations may be summarized by presenting thevhent— 0+: see Appendix A in Ref[{17]. In d=4 one has
angular functiors(6) for the surface tension. For the purpose M—1+%a:% so one should, in principle, see a square root

of normalization, we employ cusp then; but such a cusp is absent in Fig. 2. This is because
the amplitudesAX],,(h,,) vanish identically in the classical
0= (alomg) ™2, (5.6 situation: see EqA.30) of Ref. [17].

It transpires, as we will now explain, that this erroneous

which has the same units as surface tension. Figure 2 pr&ingular behavior appears because the EdGF theory does not

sents a plot of(6) for d=4. One sees that, owing to the wall satisfy the desideratuinof Sec. Ill. More specifically, a zero
dependenceembodied inM; — —), s(6) i’s not symmetric of the order parameter profile is not represented correctly

with respect tof=0. Notice also thas(6) varies perfectly whenT =T, andh,, > 0: recall that the order parameter in the

i h itical isoth lués + i EdGF surface tension integred.1) now runs fromM =M,
zhmoou?d y across the critical 1sotherm values =0 as it 9 to M=M..>0 and so passes through the vaMe=0

The qualitative features of the scaling function ds3 which is critical whenT=T or 6=6.. Equivalently, the
dimensigns are the same as fied How?aver as seen in EdGF surface tension can be represented by a real-space in-
Fig. 3, an unexpected, albeit small cusp appeatsa#t. The tegral involving the free energf{M(2)], as in(3.26. Now,

presence of the cusgvhich is certainly absent whet=4) let u_sdfoctl;]s on tth?b t(te_rrhxl\}léz) anM\EV(Mt) Eiee(z.?)]; "f’"
implies that there is a line of nonanalyticity along the critical consider the contribution ofdz 2) to the surface ten-

: ~ i : . : sion. In order to find the scaling behavior of the profile near
isothermt=0 whenh,.>0. This is quite unphysical since [, : .

singularities in the thermodynamic functions, including sur-'\ﬁ_ofb\:vger?;?' analyz¢3.25 1o find (see Appendix B of Ref.
face quantities, can occur only at the critical poibth..) [17] 9

=(0,0). Thus, from the analyticity away from the critical
point, one expects M(@) = t72(z - 7,), (5.9

A3 (t,h,) = AZ (h,) + AST(h)t + AS5(h )2+ -

(5.7  when z—z, Evidently the zdependence is linear as ex-
pected from the analyticity df1(z) whent# 0. However, by
when h,#0 and t— 0%, respectively. However, analysis scalingz varies asé~t™" andh., ast*; thus the scaling be-
shows that the surface tension predicted by the EdGF theotyavior of the profileM(z) nearz=z, can be estimated leading
behaves as to
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TABLE I. Numerical values for the ameliorated angular surface tension scaling furgrin three
dimensions. Note tha#.=0.269 293 and);=0.422 519[9].

0 's(6)/ oy 0 's(6)/ oy 0 's(6)/ oy 0 's(0)/ oy

-6 1.727 13 -0.20 -1.677 43 0.08 -0.076 19 0.30 4.458 74
-0.40 1.125 36 -0.16 -1.783 25 0.12 0.587 32 0.32 4.792 82
-0.36 0.207 79 -0.12 -1.767 07 0.16 1.35590 0.34 5.022 93
-0.32 -0.513 65 -0.08 -1.638 86 0.20 2.210 93 0.36 5.121 25
-0.28 -1.05567 -0.04 -1.40558 0.24 3.12971 0.38 5.049 63

-6 -1.17307 0 -1.069 44 & 3.812 64 0.40 4.739 23
-0.24 -1.43871 0.04 -0.627 87 0.28 4.050 87 0 + 3.806 99

2o dz(2=2) (,2)-20en tions of s(#) calculated using the sets 1,.2,, 6 in Table | of

fdz h.M(2) ~ t7"“¢h., s 3 : [9] in place of the preferred s¢€6.2) of Ref. [9].

The largest deviation occurs &t 6,=0.42; normalized
by the values(6,) in Table | it is about 3%. 9] the varia-
tions in the predicted universal ratios associated with the
Note that the second integral is dimensionless and scale-frggarameter changes ranged from 0.2% to 5%. Thus, the func-
and so has been regarded as a fixed number. Via the scalitign s(6) shows only the same level of variation as might
relations, the exponentnr/2)-2v+A reduces tou—-1  have been anticipated.
+(a/2) which corresponds to the cusp appearing5r8). Finally, we have also checked the effectssofl) of using

Since the correct scaling function should not exhibit such'untuned” estimates foa..(6). Indeed it was found ifi9] that
nonanalyticity, we introduce an interpolation procedure thathe [2/0] Padé approximant foa.(6) could not fit the
smooths out the calculated cusp s(¥). The @ range, say universal ratio while also fittingf*/f~, «A*(f*)3, and
[6., 6], selected for the interpolation is arbitrary. However, (C*/C)(f¢/c*)?77. Likewise for the other approximants of
the choice(8,, 6,)=(0.20,0.3% encompasses the cusp andthe same order, namelyl /1] and[0/2]. Hence, it was nec-
seems reasonable. We have used a polynoRiidl of de- essary to introduce thg3/0] approximant. By using the
gree 5 which is the minimal order to match the first and[2/0] approximant fora.(6), which is representative of the
second derivatives at both ends of this interval. The resultingow-order approximants, we have calculated the angular
polynomial for the extended sine model parameters is givefunctions(6;[2/0]) with the preferred parameter gét2) of
in Eq. (4.4.50 of [17]. It agrees closely with the calculated [9]. The difference betwees(9;[2/0]) ands(#;[3/0]) in the
values ofs(6) in the intervals[0.20, 0.2¢ and[0.32, 0.3,  range -f,=< 6= 6, is very small; indeed, it is invisible on a
furthermore, the largest deviation Bf¢) from s(6) occurs at  plot. However, a large difference of about 30% arises in the
the cusp and is only 3%. subcritical ranged, < =< 6. This occurg(i) because the ap-

From now on, when the distinction matters, we will write proximants[2/0] and[3/0] behave quite differently in the
's(6) for the ameliorated angular function to distinguish it two-phase regiod; <|6|< 6, (see Fig. 8 of[9]) and (ii)
from s(6) that has the cusp &= 6.. Selected numerical val- because the calculation efé.,) for 6,< 6.,< 6, involves in-
ues ofs(6) are given in Table I; values spaced at intervalstegration through the two-phase region whereas the range
A6=0.01 are available in Table 4.1 gf7]. -60,< 0,,< . requires integration only through the one-phase

In the previous study of the extended sine md@glvari-  region in which the approximants are very similar.
ous parameter sets near the preferred set in(&8) of [9]

were examined in order to check the sensitivity of the uni- VI, NUMERICAL RESULTS
versal amplitude ratios. Here, we also check the sensitivity of E R.THUE REACE TELlil ION
s(#) under the variations in the parameter sets considered in 0 sU c SIONS

Table I of [9]. As explained in Sec. VII of9], the optimal Based on the angular scaling functisf®) or, where ap-
parameters..q, a..,, etc., for the true correlation length are propriate, the ameliorated versiag), calculated with the
determined separately for each set by fitting the unlvers%referred parameter sé.2) and(7.5) of Ref. [9], we now
ratios K(f~)? and eA*(f*)4, £*/f7, and (C*/C)(f°/f*)*7.  describe various theoretical predictions for the interfacial
Thens(6) is computed for each parameter set using EdGkension near a critical endpoint.
theory.

It must be noted that the value &f depends somewhat ] ]
on the parameter set. This implies that the values(éj A. Amplitude ratios

calculated from different parameter sets are not strictly com- Recall first the surface tension amplitudés andK de-
parable. However, the change éh occurs only in the third fined in(1.1)«1.3). On using the parametric form fd3, in

decimal place. Thus, ignoring the small changes in ¢he (1.12 the surface tension amplitude abodVgis readily read
scale, we have examinexs(6) =s(6)—s(6),, i.e., the devia- off as

(5.10
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R M= c ulA >
K" = SO0} =0). 6y §<E) 33454, Mpu526+7,
Owing to the asymmetry o§(6) with respect tod=0, we KAC K
must choose the sign ofé4 appropriately for zero-field be- . m _ (6.9
Ik())w T.. In accord Wlth. Fig. ta), the a|@ mterface exists &(E) —-103+1, &B“’ﬁ:— 16242,
eneathT, when h=<0; thus, the amplitud&k™ must be K \c* K
evaluated a¥=-6, yielding i )
where we recall thaB and C* are defined as ifi8]. More
K™ =s(= 60)/|k(6y)|“. (6.2 directly we find
Similarly, atf= 6, one obtains the amplitude f&=. ,, in the KS/KS =K /K5 =~-3.25+5, (6.10
limit h— 0+, which via Antonow’s rule is the surtK+K~):
thus we have which may also be used in analyzing experimental data and
might well be tested in simulations of Ising-type systems.
K=[s(6y) - s(= o) J/[k(O)[*. (6.3 We plan, as mentioned in the Introduction, to consider the

It is also instructive to define corresponding critical sur-2pPplications of the present theory to experiments in the fu-

face tension amplitudesn the critical isotherm. Via scaling Ure [22]; but it should be noted here that the<difference in
one can write sign and magnitude of the amplituds, and Ky, was ex-

_ plicitly remarked by NWW on the basis of the theory of

A3 =~ KE[h[M* = KgIM[#2, (6.4  Ramos-Gémez and Widoii0], a square-gradient approach
formulated to incorporaté=>5. [See also Rowlinson and Wi-

i dom [1] (pp. 287-293 and our comments followingl.4)
and (2.10) above] Furthermore, their analysis leads to
Ku/Ky=-148/42=-3.5,; see [10] p. 614 and[1] Eq.
(9.124. This value is only some 8% larger in magnitude than
found here.

where the sub- and superscripts and < stand forh,M
>0 andh,M <0, respectively: owing to the asymmetry o
the surface tension with respecthe- —h, this distinction is
essential. For reference we may note that = 0.80; while
nl B=3.8. The parametric representations then yield

KS =S(0/1(0)|“*,  KE =s(= 8/|I(8)|“'*.  (6.5)

Note the appearance sf6) here so that the prediction for
K¢ depends on the amelioration procedure. ] ) )
The specific reduced surface tension amplitudes predicted While parametric scaling forms are conceptually and

by our EdGF theory with the extended sine model are thenceomputationally effective, direct scaling representations, as
in (1.12, are more useful for comparison with existing or

K*lop=~1.06944, K'/oo=1.28168, Klog=1.54344,  proposed observations. Thus from the angular funcslah

we have computed the scaling functioﬁ;{ﬁ): in Fig. 4a)
these are plotted in terms of the figlol chemical potential

B. Scaling functions

KE /ool g% = 0.293 755, KE/agl g/ = - 0.090 382 6,

> —ulp < —ulB — _ variableh.
Kooy 923.242, Kyloolo 284.063, In experiments, for example on binary mixtures, the den-

(6.6 sity deviation (M) is more readily accessible than the

where we used Table | for the §) values and the extended chemical potential deviatiotwﬁ). Hence, in practice scaling
sine model value§9] plots in terms offh are more convenient: the corresponding

K(6y) = - 1.266 16, 1(89/1y= ~1(= 6/l = 0.529 162, scaling functions may be defined via
A3, = K|t|*Sy,(M)  with M= M/B|t|?, (6.11)

M(00)/Mo = = m(= 6c)/my = 0.240 366, ©.7 while their behavior is shown in Fig.(8). The normaliza-
while oy is defined in(5.6) and represents the nonuniversal tions adopted in1.12 and here lead, with Antonow’s rule
surface tension scale. (1.4), to the “jump conditions”

From Eq.(6.6), one obtains the universal amplitude ratios ~ ~
S(0+)-S(0-)=5(1-S4(-D=1, (6.12

P=0.13%+2, Q=-0.834+2, (6.8
that enter belowr .

where the uncertainties have been estimated by examining away from the critical point, all bulk and surface quanti-
results from the other parameter sets in Table | of F&f.In tjes must be analytic unless some phase boundary intervenes.
comparison with the preliminary calculations quotedity), This is reflected in the smooth behavior&fh) for all h. In

one sees that our improved estimate ris about 15% L . o .
larger [and still positive in contrast to(1.6)] while the Q contrast, there is a jump iB.(h) ath=0 in accordance with

value displays only a 0.5% deviation. These estimates will b&6-12): for h=#0, howeverS.(h) is analytic for allh. Similar
discussed elsewhef@2] in relation to the experimental ob- Cconsiderations apply to the break in t§¢(m) plot seen in
servations of Mainzer-Althof and Woermaifi20]. Fig. 4(b). On the critical isothernT=T, the two branches of
For the surface tensions on the critical isotherm, outthe scaling functionS,(h) and S.(h), must join smoothly
analysis generates the universal amplitude ratio predictionsvhen h— +o0; this again is a consequence of the overall
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FIG. 4. The universal scaling functions predicted by the EdGF
surface tension theoi@) vs the ordering fieldh and(b) vs the order

parameterm. Note the lack of symmetry abolt=m=0 and the
jumps dictated by(6.12).

FIG. 5. Plots of(a) the singular part of the critical endpoint
surface tension as a function of the reduced temperatimefixed
values ofM and(b) with the addition of the model background term
30(T,h) given in(6.13 for the same values dfl.

requirement of analyticity away from the phase boundary.Table ) who also point to some experimental evidence of
Hence, the two branches &f(h) and S,(fh) must both as-  ¢r0SSINGs. _
ymptotically approach one anothersxvhd?ne too and m Qn the other hand the isotherms AF, vs .[h_hO(T’g)]
— +o0; this can be seen easily in Fig(b}. Notice that the (which, recalling(4.2) et Seq., should repladein t.he f|ggre
dotted line plots labeled=T, in Fig. 4 depict only the do ”OtCTOSS- see also Fig. 4.10 [ﬂf?]. However, in addltlo_n
asymptotic power-law behavior embodied @4) that cor- to the displacemertiy(T,g), inclusion of the surface tension

. ~ backgroundX(t,h) will distort naive expectations based on
responds in these scaled plotshe-» +«. (It may also be

. . Fig. 4 when real isotherms for the total interfacial tension are
remarked that the unphysical cusp in the EdGF~surface terléx%mined vs density or chemical potential. See Fib) be-

sion on the critical isotherm fdn>0 is located ah— +%;  |ow for another aspect of this issue.
thus, with or without the cusp, the scaling plots in Fig. 4 look |t is appropriate to mention here that in their theoretical
similar,) analysis of a binary fluid mixture, NWW214] tacitly as-

Finally, it should be clear that the scaling function plots in sumedsymmetry in the surface tension above and below
Fig. 4 may ~a|SO be read as describing the variation Oby supposingS;, () =Sy, (): see their Eqs(2.8) and (2.9)
A3(T,h) =« S.(h)=S;(M) with h andM at fixed values off  and Figs. 3 and 10. However, on physical grounds such a
=T.. In particular, one may then notice that the isotherms osymmetry is quite implausible. Thus, beldw there are two
AY vs M for T aboveT, will crossthe critical isotherm when  distinct fluid phasess and y favored byh>0 and h<O0,

M is positive, and, by continuity, hence also cross one anrespectively, and a vapor phaae(or wall) favoring the 8
other [22]. This crossing of the surface tension isothermsphase; but, aboveé,., there is only one fluid phas@y: see
above T, has been anticipated theoretically by Ramos-Fig. 1. Hence, one must allow for th€=T, symmetry
Gomez and Widong[10]: see text after their Eq3.15 and  breaking differences seen in Fig. 4. For comparison, one may
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recall that for the bulk equation of state when expressed in 3
terms ofm (or in terms ofh) one also needswo scaling SAT H
. ~ . 4} \
functions, sayQ.(m) for t=0 andt<0, as is well known; (W) i '
and, again, the two branches must be analytically related M3 | NoR
However, in the bulk thermodynamics one may accept full AN
asymptotic symmetry undér- —h or m - —m and then em- 2l \ \
ploy just a single function, say, in terms of the variable \1*-&%
t/|m|YAocm~YE, But that symmetry is alsaot applicable to 1} e
the surface tension. e I
Experimentally, binary mixtures are prepared at various 0
fixed compositions and the surface tension may then be ob —
served as a function of temperature: see, ¢Xf]. This is Ly T
comparable to keeping the order paraméfefixed. Accord- | ) , ,
ingly we present such plots for the EdGF predictions in Fig. 020 0I5 -010 -005 ‘t’ 005 010 015 020
. (a)
It must be recalled, however, that EAGF theory yields 2

only the scaling or singular part of the surface tension. Since
the leading power-law of the surface tensitift, vanishes at
the critical point, the contribution from the analytic back-
ground isnon-negligible To illustrate this point, we include

in Fig. 5b) plots for the full surface tensior=A3+3,
with an assumedut reasonably realistimodelbackground
term, namely,

So(T,h)/K=1-2+5t2, (6.13

where, for simplicity, only the temperature dependence has
been considered. Siné€" <0 [see(6.6)], the scaling part of
the surface tension abovk in zero-field, namelyA, 5,
~K*|t|#, curves downwards as seen in Figa)sHowever, in -4 0/000T o001 oot
Fig. 5(b), the corresponding curvature in the full surface ten- (b) i

sion now appears to bhepwardsowing to the effects of the

background(T). In fact, the same sign of apparent curva- 5 6. (a) Temperature derivative 03 =AS/K at fixed M
ture is observed in the NWW experiment on iSobutyric yith values the same as in Fig) Bevealing a logarithmic singu-
acid and watef14J; this clearly demonstrates the importance |arity when M is positive andt (<0) approaches the coexistence
of the backgrounch(T,h_). The significance of also intro-  curve;(b) semilogarithmic plot of the derivative of the scaling func-

ducing integral powers dfi in (6.12 will be discussed else-  tjon S_(h) beneathT,: the straight line is a guide to the eyes while

where[22)]. the dots represent the derivative.

0.1

Although the presence of a logarithmic singularity in
C. The complete-wetting singularity Ea‘y(h) on approaching a wet interface may be regarded as
. o well established theoretically, an important caveat is that in
llt htas bheer; dpredlctec_i bi/hCaI[IIEG] thgjt; Io(graughmlc SN Al cases the corresponding theoretical analysis entails the
gu a”Y shou ocgur in the slope alyi b on. ap- assumption that interactions within the fluids are entirely of a
proaching the coexistence curve beldw, i.e., by takingh

! S _ | short-range character, i.e., decaying faster than any power-
— 0+ (along any generic, nontangential paffihis logarith-  |aw, This, of course, precludes slowly decaying interaction
mic singularity is associated with the complete-wetting tra”‘potentials such as the 6 form that characterizes the van

sition that, in turn, is reflected in Antonow’s rule. Recall that ger Waals intermolecular forces prevalent in real molecular
whenh=0, the two liquid phaseg and y coexist with the  fjuids. At fixed temperaturd in the rangeT,,<T<T, van
vapor phaser. Thus, whenh— 0+ while « and y phases der Waals forces should generatéha h,) =%/ singularity in
coexist[i.e., on the surfacer in Fig. 1@], the 8 phase of 5 (h). Thus, without special allowance for power-law po-
intermediate density emerges and spreads awewety the  tentials, a local functional analysis such as our EdGF theory
a|y interface. Indeed, one can explicitly show that such gnyst be suspect in relation to real fluid systems unless short
singularity arises within the EdGF theory: see Appendix C ofiange interactions happen to dominate for, say, reasons of
[17]. The analysis establishes that the coefficient of the.In  symmetry, or accidental near-cancellation, etc.

term in (9AZ/¢oh) is positive, which is fully consistent with On the other hand, in the cased# 3 bulk critical behav-

the numerical calculations presented in Fig. 6: these demorier it is known that 1¢8 potentials enter the asymptotic scal-
strate a I6T-Ty)™* singularity in the derivative of the sur- ing forms only asirrelevant corrections-to-scalingeven
face tension wherT approaches the coexistence curve atthough these may bdangerously irrelevantor certain quan-
fixed densityp>p,, i.e., M>0. tities such as correlation functions at long distangég)]. It
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is possible that a similar situation pertains in the case of thé& may be worthwhile to investigate the generalized or GAGF
surface tensions near a critical endpoint in which case a locaheory[6]. However, the undesirable feature may still remain
functional theory might still prove asymptotically adequate.since we are inclined to believe that the origin of the cusp is
To our knowledge, however, this issue remains open and, asssociated rather directly with the single, scalar order-
yet, a singularity in the derivative of the surface tensionparameter formulation: both EdAGF and GdGF theories em-
2,,(T,h) near a critical endpoint has not been identifiedploy a simple scalar order parameter which cannot avoid

experimentally: see, e.g.14]. “local criticality” when the interfacial profile crosses from
one phase to another &a=T.. In response to this observa-
VIl. SUMMARY tion, Mikheev and Fishef48] have addressed the formula-

tion of two-order-parameter theories in which, in particular,

As illustrated in F|g 1, binal’y fluid mixtures exhibit criti- the local energy ﬂuctuation’ as a second “critical density’”
cal endpoints where, in the three-dimensional thermodypjays a role; but a practicable scheme of approximation has
namic field space, a critical line of mixing transitions termi- not so far been achieved.
nates at a first-order transition surface between the liquid Nevertheless, the application of EAGF theory to other
phases and their common vapor phase. At such critical engyroperties of fluid interfaces and surfaces, seems worthwhile
points, the interfacial or surface tensidfiT, h) becomes sin- (e.g.,[13]) and in the present case the cuss(f), the scal-
gular in both temperature and ordering fi€ldOur aim here  jng function for the surface tension, produces a deviation of
has been to calculate the scaling functions describing thgnly a few percent from the naturally interpolated analytic
asymptotic behavior of the surface tensions through thgariation. Accordingly, for numerical purposes we have
whole neighborhood of the critical endpoint. adopted a smoothing procedure that removes the cusp; this

To this end, the local functional theory of Fisher and Up-yjelds the ameliorated angular functisf¥) that is recorded
ton [5,6] in the extended de Gennes—FisBAGH version  pymerically in Table |.

of the theory, has been exploited because it captures many
significant physical features tied to the nonclassical values O&‘Q
the relevant critical exponents, especiafjy-0. As seen in

On this basis the universal scaling functioﬁ_s(ﬁ) and
(m) have been calculated: see Figs. 4 and 5 which reveal

(4.1), the EAGF theory requires suitable scaling representas-igni_ﬁcam features of '_[he anticipated variation of the surface
tions for the auxiliary free energ@(M: T,h..,g) and for the tensmnE(T,h). Ir_1 particular, the role of the analytic back—
correlation length factog?/2y. To generate these, we have 9round contributiorso(T,h) can be assessed. Together with
used the extended sine model of R, since it embodies the |mprove(_1 theoret_lcal pre(j|ct|or1[§.8) for the umversal
the appropriate analytic behavior, extends smoothly througfiurface tension amplitude ratio8,andQ, these results will
the two-phase region beloW,, and fits the values of many be useq elsewhef@2] to ree_malyze the experimental dat_a of
important universal amplitude ratios. Nagarajan, .Webb, and Widorfl4] and to compare with
However, both numerical and analytiddl7] calculations ~ Other experiment§18—20.
lead to the prediction of a small but unphysical cusp in the
variation of the surface tensidX(T,h) on crossing the criti-
cal isotherm at positivh, i.e., on entering the region of the
phase diagram: see Fig(al. This unanticipated behavior The interest of B. Widom and P. J. Upton has been appre-
represents a shortcoming of the EAGF theory that is found teiated and we are indebted to H. W. Diehl, S. Dietrich, J.
originate in the predicted variation of the order parametefindekeu, and B. Widom for helpful comments on a draft
profile, M(z), in the immediate vicinity ofT=T, when it  manuscript. The authors are grateful for the support of the
passes through the critical vali#(zy)=0. An improved lo-  National Science Foundation through grants CHE 99-81772
cal functional theory might avoid this difficulty. To that end, and CHE 03-01101.
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