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Parametric scaling representations are obtained and studied for the asymptotic behavior of interfacial ten-
sions in thefull neighborhood of a fluid(or Ising-type) critical endpoint, i.e., as a functionbothof temperature
and of density/order parameteror chemical potential/ordering field. Accuratenonclassical critical exponents
and reliable estimates for theuniversal amplitude ratiosare included naturally on the basis of the “extended de
Gennes–Fisher” local-functional theory. Serious defects in previous scaling treatments are rectified and com-
plete wetting behavior is represented; however, quantitatively small, but unphysical residual nonanalyticities on
the wetting side of the critical isotherm are smoothed out “manually.” Comparisons with the limited available
observations are presented elsewhere but the theory invites new, searching experiments and simulations, e.g.,
for the vapor-liquid interfacial tension on the two sides of the critical endpoint isotherm for which an amplitude
ratio −3.25±0.05 is predicted.
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I. INTRODUCTION AND SCALING THEORY

Consider, for concreteness, a binary liquid mixture con-
sisting of two species,A and B. For a full thermodynamic
description, one needs three field variables, saysT,h,gd
[1,2]. The ordering fieldh is conjugate to the order param-
eter,M. For fluids, the order parameter may(in leading or-
der) be taken as the number densityDr=r−r0sT,gd mea-
sured relative to a coexistence valuer0sT,gd. Alternatively,
M could be a composition variable such as mole fraction
difference, a volume fraction difference, and so forth. For the
nonordering fieldg, one may take the pressure, or the chemi-
cal potential of one species, eitherA or B, etc.

Figure 1(a) illustrates a typical phase diagram in the
three-dimensional field space[2]. At any point on the surface
labeledh̃=0, the system exhibits phase separation into two
coexisting phases,b andg, rich in A andB, respectively. We
will adopt the convention that theg phase has the higher
(mass) density and hence sits at the bottom of a container
when a gravitational field is present: see the inset in Fig.

1(a). By increasing temperature while keepingh̃;h
−h0sT,gd=0, the state point will reach the linel which is a
locus of critical points,Tcsgd. Further temperature increase
results in mixing of theb andg phases into a single phase,
saybg. On the other hand, decreasingg at fixedT,Tcsgd on

the h̃=0 surface leads to a triple-point line,t, at which ap-
pears a new, noncritical or “spectator” phasea which repre-
sents the common vapor of the liquid phasesb, g, andbg :
see the inset in Fig. 1(a). A first-order transition, between the
vapor and the liquid phases, occurs across the vapor-pressure
surface labeleds which meets theh̃=0 surface at the triple
line. The critical line,l, and the triple point line,t, terminate
at a pointsTe,0 ,ged: that is the “critical endpoint.”

Recent field-theoretic renormalization group theory has
confirmed explicitly that the critical behavior at a critical
endpoint is the same as on the critical locus[3,4]. Neverthe-
less, further, new bulk thermodynamic singularities do ap-
pear at a critical endpoint[5–7].

Beyond the bulk, however, there are singularities ininter-

facial or surface tensionswhen, in the presence of the vapor
a, the two phasesb and g merge into the homogeneous
phasebg, or vice versa[5,6]. In Fig. 1(a) one may follow the
triple line and its smooth extension on thes surface, beyond
the critical endpoint, or, in Fig. 1(b), simply trace the line
gssTd. The “critical surface tension” between the coexisting
phases vanishes below the critical endpoint temperatureTc
=Te, as

SbugsTd < Kutum, t ; sT − Ted/Te → 0 − , sh̃ = 0d,

s1.1d

where, via standard scaling relations[1,5,8–10], the critical
exponent is given bym=2−a−n so thatm.1.26 for typical,
three-dimensional fluids. The amplitudeK has dimensions of
energy per unit area where, here and below, we adhere to the
notation set out in the Appendix of Ref.[8]. The “noncritical
tensions,”Saubg andSaub, should behave[1,5], after subtrac-
tion of a suitable, nonsingular common background,S0sTd,
as

FIG. 1. (a) Phase diagram of a binary liquid mixture in the
three-dimensional field spacesT,h,gd: see text for details.(b) Sec-
tion of the phase diagram(a) containing the planeh̃=0. The critical
endpoint,sTe,ged, is where the critical linel terminates at the first-
order transition linegssTd.
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DSaubg < K+utum, t → 0 + , sh̃ = 0d, s1.2d

DSaub < K−utum, t → 0 − , sh̃ = 0 − d, s1.3d

which relations serve to define the amplitudesK+ and K−.
BeneathTc theg phase coexists with thea andb phases and,
in a sealed container, it sits below theb phase owing to its
presumed heavier density. Now consider, hypothetically,
bringing into contact the two phasesa andg, nearbg criti-
cality; this produces a new interface. The corresponding non-
critical surface tensionSaug can be obtained from Antonow’s
rule [1] which states

SaugsTd = SaubsTd + SbugsTd. s1.4d

This relation can be derived by supposing that the three
phasesa, b, andg can coexist and meet with nonzero con-
tact angles, and then by letting the contact angle between the
interfacesa ub andb ug go to zero[1]. (It should be recalled,
however, that Antonow’s rule typically fails at lower tem-
peratures, specifically below a wetting temperatureTW.)

Using the classical van der Waals or Cahn-Hilliard theory
[11] and a model free energy of the Landau-expansion type,
Widom [12] has studied various properties of the noncritical
interfaces, such as that betweena and b, near the critical
endpoint. Later, nonclassical critical exponents were embod-
ied into the local free energy expression via postulated scal-
ing forms [10]. However, the original theory of Widom and
Ramos-Gómez[10] led to an unexpected type of correction
in the surface tension, namely autug term: this ismore singu-
lar than the nonanalytic leading termutum whenever the spa-
tial dimensionality,d, exceeds 3−h [5,6] which cannot be
considered acceptable.

Fisher and Upton[5] pointed out that, near the critical
endpoint, the amplitude ratios

P ; sK+ + K−d/K, Q ; K+/K−, s1.5d

should beuniversal. They reported mean-field calculations
[5,6,10] yielding

P = − 1
2sÎ2 − 1d = − 0.20710 . . . , Q = − Î2, s1.6d

which should be valid ford.4. However, to obtain more
realistic values ford=3, Fisher and Upton[5,6] presented
preliminary calculations using an extended de Gennes–
Fisher(EdGF) local functional theory[6] for fluid interfaces
combined with a simple “interpolated linear model” for the
equation of state(as described in Ref.[9]). This approach
provided the significantly different estimates

P . 0.12, Q . − 0.83. s1.7d

More recently, the EdGF theory has also been applied to
critical adsorption problems[13].

Our aim here, apart from estimating these universal ratios
more precisely, is to calculate the noncritical surface tension
in nonzero ordering field, i.e.,DSaubg, DSaub, andDSaug as a
function of t and h (or the order parameter,M), on thes
surface in thefull vicinity of a critical endpoint. This is a
basic problem of interfacial thermodynamics first broached
experimentally in pioneering work by Nagarajan, Webb, and

Widom [14]. In fact, there is just a single function of two
variables,DSst ,hd, that is to be sought once a suitable back-
groundS0st ,hd is subtracted from the total surface tension,
saySau•st ,hd. Furthermore, in the first instance our main con-
cern must be with the singular, critical behavior which we
may confidently expect to be described in scaling form so
that DS / utum is related universally(for d,4) to the scaled

combinationM / utub or, equivalently, toh̃/ utuD, where, in stan-
dard notation,D=b+g=bd.

Three decades after the development of renormalization
group theory one might expect this problem to be susceptible
to such an approach. Unfortunately, however, the still re-
maining difficulties, both technical and conceptual, are pro-
found despite the progress reported, for example, in the re-
view articles by Abraham, by Diehl, and by Jasnow in Ref.
[49] and subsequent developments(some of which are refer-
enced in further detail below). Accordingly we report here on
calculations based onlocal functional theoriesgoing back
historically to van der Waals’ analysis of the critical surface
tension SbugsTd. Specifically, we pick up and develop the
proposals of Fisher and Upton[6] who advanced, in particu-
lar, the EdGF theory which can consistently embody the cor-
rect nonclassical critical point exponents, especiallyh.0.

Such theories rely on the availability of an accurate de-
scription of thebulk thermodynamic properties. To that end
we will make heavy use of theparametric formulationof
scaling theory in the neighborhood of a bulk critical point as
extended to represent the true correlation length,j`sT,hd,
and so provide a basis for calculating interfacial tensions via
local functional theories[6,8,9]. For completeness and ease
of reference we recall the basic parametric expressions here.
As standard, one first has

t = rksud, h = rDlsud, M = rbmsud, s1.8d

whereksud is an even function of the “angular” variableu
with k0;ks0d=1 andks±ucd=0 so thatu = ±uc corresponds
to the critical isotherm,T=Tc, while lsud andmsud are odd,
with ls0d=ms0d=0 and ls±u1d=0 with msu1d.0 so that
u = ±u1 describes the coexistence surfaceh̃=0 beneathTc:
see Fig. 2 of[9].

For general thermodynamic purposes, however, it proves
more effective to avoid integrating the equation of state to
obtain the free energy; accordingly[9], we opt to treath [and
lsud] as derived from the singular part of the reduced Helm-
holtz free energy which may be written in scaling form as

Asst,Md = r2−ansud, s1.9d

where, following[9], we can write

nsud = r−2+asingHE
MR

M

hsM8;TddM8J , s1.10d

in which the operation sing{•} extracts only the leading sin-
gular part whileMR,0 is a fixed reference value: see also
(2.1) below. One then finds thatlsud is readily expressed in
terms ofksud andnsud: see Eq.(4.4) of [9].
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The generalized local functional theories proposed in[6]
also require the true correlation length,j`sT,hd, which speci-
fies the exponential decay of correlations(in the presumed
absenceof long-range power-law or van-der-Waals-type in-
teractions). The corresponding scaling form can be written
[9]

j`
2/2x = r−hna`sud, s1.11d

wherex=s]M /]hdT is the reduced compressibility(or sus-
ceptibility) while h andn are the standard correlation critical
exponents. It is worth stressing that an essential feature of
the generalized local functional theories[6] is to provide in a
consistent way forh.0 since this is vital for the accurate
description of real and realistic model systems whend,4.

The local functional theories, if they are to yield compu-
tations for theinterfacial tension, also require thatAssM ,Td
and j`

2 /2x are well definedthrough the two-phase region
below Tc whereuMu is less thanM0sTd<Butub, the order pa-
rameter at coexistence(or, in magnetic terms, the spontane-
ous magnetization). While this is most certainly questionable
from a rigorous viewpoint, one may in practice construct
trigonometric formsfor ksud, msud, nsud, etc., which extrapo-
late smoothly(and, indeed, analytically) to uuu.u1 and so
through the two-phase region: see[6,8,9]. In such cases we
takeksud, msud, etc., as smooth periodic functions, of appro-
priate parity, in the interval −u0øuøu0 whereu0 then cor-
responds toh=M =0 for T,Tc. On this framework an “ex-
tended sine model” has been built and fitted to reliable
estimates of critical exponents and amplitude ratios for the
sd=3d-dimensional Ising model[9]. The resulting scaling
functions will be used here to study the interfacial tensions
near a critical endpoint.

In the scaling region the singular part of the full interfa-
cial tension can consequently be written parametrically as

DSst,hd = rmssud, s1.12d

and our basic task is to calculate the angular surface tension
function ssud. Note thatDS represents(i) DSaubg when uuu
,uc, (ii ) DSaub whenuc,uøu1, and (iii ) DSaug when −u1
øuø−uc, in accordance with Fig. 1 and the notation ex-
plained above. Oncessud is determined, the surface tension
can also be written in the standard scaling form

DS < KutumS±sD̄h/utuDd, s1.13d

where the universal scaling functionS±sxd can be readily
calculated.(Note that, as customary, the subscripts1 and2
stand fortù0 andtø0, respectively.) The amplitudesK and

D̄ here are the nonuniversal metric factors needed for nor-
malization and to makeS±sxd and the argumentx, dimension-
less. In the notation of[8] we takeD̄=C+/B andx= h̃, which
provided a convenient normalized variable in the analysis of
Ref. [9].

Experimentally, as mentioned, Nagarajan, Webb, and Wi-
dom(NWW) [14] were the first to test theoretical predictions
for the universal surface-tension scaling functions off theh̃
=0 axis in their studies of mixtures of isobutyric acid and
water. For the same mixture, Howland, Wang and Knobler

[15] measured the critical surface tensionSbug and Greer
[16] measured densities on the coexistence curve. The two
latter experiments can be used to provide a consistency
check and calibration of the NWW data[17]. Other mixtures
have also been examined. Quasi-binary mixtures of
n-octadecane andn-nonadecane in ethane have been studied
by Pegget al. [18] to measure the surface tensions through
and near both the upper and the lower critical endpoints. The
surface tension of the water and 2,5-lutidine system at and
off the critical composition has been measured by Amaraet
al. [19]. For a similar mixture of water and 2,6-lutidine,
Mainzer-Althof and Woermann determined the values ofP
andQ experimentally[20]. Interfacial tensions of the critical
mixture of 2-butoxyethanol and water have been measured
by Ataiyan and Woermann[21]. The applications of the
present theory to these various data will be presented else-
where[22].

The rest of this article proceeds as follows. In Sec. II, we
review briefly the classical theory of interfaces. The con-
struction of more general local free energy functionals is
taken up in Sec. III. Following Fisher and Upton[5,6] we
work out the details of the extended de Gennes–Fisher
(EdGF) ansatz and obtain formulae for the equilibrium order
parameter profile and the surface tension. The hypothesis
that the noncritical vapor phasea can be replaced by a wall
with a surface fieldh1 [5,6] is introduced in Sec. IV. In the
scaling limit h1/ utuD1→−` (whereD1 is the appropriatesur-
face critical exponent), there appear terms in the total wall
tension that diverge although remaining analytic int. After
subtracting these divergent terms, we can express the finite
singular part of the surface tension near a critical endpoint
explicitly in parametric scaling form. In Sec. V these expres-
sions are evaluated numerically ford=3. However, an un-
physical although quite smallcuspis uncovered in the basic
scaling functionssud in (1.12). Its origin is discussed and
found to reside in a fairly subtle deficiency of the EdGF
scheme. By using an interpolation scheme, the cusp can be
smoothed out leading to acceptable approximations for the
universal scaling functionsS±sxd in (1.13). On this basis vari-
ous concrete numerical results are presented in Sec. VI for
the surface tensions in the vicinity of a critical endpoint.
Section VI contains some brief concluding remarks.

II. LOCAL FUNCTIONAL THEORIES
FOR FLUID INTERFACES

A. The auxiliary free energy function

Let us consider various free energies that will be needed
in discussing the local-functional theory of fluid interfaces in
a general way. LetAsM ,Td be the true equilibrium Helm-
holtz free energy density that preserves the appropriate con-
vexity properties inM and T [23]. The free energy density
AsM ,Td=AtotalsM ,Td /V can be obtained by integrating the
equation of state,

AsM,Td =E
MR

M

hsM8ddM8 + AsMR,Td, s2.1d

using a fixed reference valueMRÞ0: such a choice of refer-
ence value guarantees no singularity acrosst=0 in AsMR,Td.
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In order to keep track of dimensions, we takeM as the den-
sity differencesr−rcd from now on.

Now let A†sM ,Td be the Helmholtz free energy density in
the one-phase region and its presumed analytic continuation
into the multiphase region[6,8,9]. The typical van der Waals
loop, which does not respect the convexity, should appear in
the multiphase region ofA†sM ,Td. The Maxwell construc-
tion applied toA†sM ,Td repairs the convexity(although this
is, of course,ad hoc). Evidently,AsM ,Td=A†sM ,Td outside
the multiphase region whileA†sM ,TdùAsM ,Td inside. The
excess free energyA†sM ,Td−AsM ,Td which is then always
nonnegative, serves in the local functional theories, to deter-
mine the structures of the interfaces between the coexisting
phases[24].

The conjugate free energy densityFsh` ,Td
=Ftotalsh` ,Td /V, where the subscript̀ denotes a bulk equi-
librium quantity, may be obtained fromAsM ,Td via the Leg-
endre transform,

Fsh`;Td ; min
M

fAsM,Td − h`Mg, s2.2d

=AsM`,Td − h`M`, s2.3d

where M`=MsT,h`d is the bulk equilibrium value of the
order parameter.

The interfacial tension that we aim to calculate is the ex-
cess free energy of a system in equilibrium created by one or
more interfaces. All local functional theories for interfaces
introduce an auxiliary free energyWfMszd ;T,h`g that re-
sembles the excess free energy:WsMd is always nonnegative
and vanishes only when the profile,Mszd, takes an equilib-
rium value of the order parameter corresponding to one of
the coexisting phases(Ma for the a phase,Mb for b, etc.).
Since the equilibrium values of the order parameterMa ,
Mb , etc., are specified both byT andh`, the dependence of
the auxiliary free energy onT and h` must not be over-
looked.

Thus the auxiliary free energy functionWsM ;T,h`d
needed in a local functional theory can be defined by[5,6]

WsM ;T,h`d ; A†sM,Td − h`M − Fsh`,Td, s2.4d

=A†sM,Td − A†sM`,Td − h`sM − M`d, s2.5d

where we have usedA†sM`d=AsM`d. Since A†sMd repre-
sents the analytic continuation ofAsMd, we may also use
(2.1) to write

WsM ;T,h`d =E
M`

M

hsM8,TddM8 − h`sM − M`d, s2.6d

because the equation of state must then equally have an ana-
lytic continuation: notice thatAsMR,Td cancels out. From
this one immediately finds thatWsM` ;T,h`d=0 and
s]W/]MdM=M`

=0. Starting fromA†sM ,TdùAsM ,Td and us-
ing (2.2) and (2.4) one obtains

WsM ;T,h`d ù AsM,Td − h`M − min
M

fAsM,Td − h`Mg ù 0.

s2.7d

Thus,WsM ;T,h`d vanishes at the equilibrium values ofM
for all T andh` and its leading term in the expansion about
M` is quadratic insM −M`d. Otherwise,W takes only posi-
tive values.

B. van der Waals theory

It is helpful to review briefly the van der Waals theory of
interfaces which is a Landau-type classical theory[1,11,25].
Assuming the existence of the local free energy
WfMszd ;T,h`g that can be expanded in powers ofM and
T−Tc, the van der Waals theory takes the local excess free-
energy density functional as a sum of two terms[1], namely,

Df fMszdg = WfMszdg + 1
2J0SdM

dz
D2

, s2.8d

where J0 s=j2/xd is a constant andz is the perpendicular
distance from the interface presumed to be flat. The square-
gradient term,sdM /dzd2, accounts for spatial inhomogeneity
in the simplest manner. The overall excess free energy is then
given by a volume integral ofDfszd. Translational invariance
parallel to the interface enables one to factor out the area in
the volume integral so that the free energy per unit area, or
surface tension, can be written as[1]

SfMszdg =E dzDf fMszdg. s2.9d

Functional minimization ofSfMg with respect toMszd yields
a differential equation for the equilibrium order parameter
profile Mszd. To supply boundary conditions let us consider,
for example, a system containing two bulk equilibrium
phases withM =Mb (or M−`) andMg (or M+`) located atz
=−` and +̀ , respectively. For convenience,Mb andMg can
be taken equal in magnitude but opposite in signsMg.0d.
Then, near criticality the equilibrium order parameter profile
behaves likeMg tanhsz/jd for the stated boundary conditions
and the resulting surface tension is

S =E
Mb

Mg

dMÎ2J0WsMd. s2.10d

With a suitable representation forWfMg, one can also study
the critical and noncritical surface tensions[10,12], as well
as the critical wetting transition[26]. However, this classical
square-gradient theorycannotsatisfactorily embody all the
correct critical exponents. This is because the square-
gradient term in(2.8), when the analysis is adapted to study
the decay of correlations(rather than just the overall interfa-
cial free energy), always implies the exponent valueh=0
that is valid only fordù4. Thus even upon using an equa-
tion of state that obeys scaling and embodies correct expo-
nents(such as the extended sine model discussed in[9]), a
square-gradient form for the local free-energy yields the clas-
sical valueh=0 for the correlation function decay[27].
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III. FISHER-UPTON THEORY FOR FLUID INTERFACES

In order to generalize the classical square-gradient theory,
we start with the total free energy of the binary mixture
written in the form

FtotalsT,h`,gd = min
Msr d

F fMg, s3.1d

where F fM ;T,h`g is a sought-for local free energy func-
tional. Assuming translational invariance along directions
parallel to the interfaces, we may simply takeMsr d=Mszd.
The solutionMszd that minimizes the functionalF fMg is the
equilibrium order parameter profile for the specifiedT, h`,
and boundary conditions. We can suppose thatF fMg has a
homogeneous part describing the uniform bulk phases and an
inhomogeneous partDF, so that

F fMszdg = FbulksT,h`,gd + DF, s3.2d

where FbulksT,h` ,gd is the bulk free energy(and g is the
third field: see Fig. 1). If there were no interfaces, we would
have DF=0, andFtotal=Fbulk. Following [6], we now con-
sider a general local free energy functional of the form

DF =E drAsM,Ṁ ;T,h`,gd, s3.3d

whereṀ ;dM /dz. Without great loss of generality, we may
write [6]

AsM,Ṁ ;T,h`,gd = WsMdf1 + JsMdGsLṀdg, s3.4d

whereJ andL are to be functions ofM andT. The function
Gsxd should be even since the sign ofṀ cannot matter in the
free energy. NowA should vanish whenṀ =0 so thatDF
=0; this impliesGs0d=0. To determine other properties of
Gsxd we must proceed further.

For semi-infinite cases where an external wall is located
at z=0, the postulate(3.3) must be modified by adding a
boundary term[28]

DF fMg
A

=E
0

`

dzAsM,Ṁd + f1sM1;h1d, s3.5d

whereA is the area of the interface. The surface fieldh1 acts
only at z=0 and is coupled toM1;Msz=0d, the order pa-
rameter on the boundary.

Now let us minimize

DF fMszdg
A

=E
0

`

dzfAsM,Ṁd + dszdf1sMdg s3.6d

with respect toMszd where the boundary term has been ab-
sorbed into the integral. Then in the usual way, integrating by
parts, one obtains

dDF fMszdg
A

=E
0

`

dzFH ]A
]M

−
d

dzS ]A
]Ṁ

DJdM

+ dszdH df1
dM

−
]A
]Ṁ
JdMG + U ]A

]Ṁ
dMU

z=`

,

s3.7d

and hence finds

]A
]M

−
d

dzS ]A
]Ṁ

D = 0, s3.8d

S ]A
]Ṁ

D
z=0

−
df1
dM1

= 0, andU ]A
]Ṁ
U

z=`

= 0. s3.9d

However, sinceAsM ,Ṁd has no explicitz-dependence, we
can integrate(3.8) to get the first-order differential equation

AsM,Ṁd − Ṁ
]A
]Ṁ

= C, s3.10d

in which C is a constant.
Now consider a fully infinite situation so that the lower

limit in (3.5) becomes −̀ and the surface term drops out.
Functional minimization again yields(3.8), and thence
(3.10), while the first(wall) condition in(3.9) becomes sim-

ply the bulk conditions]A /]Ṁdz=−`=0.
In the semi-infinite situation, the form(3.4) leads to

uWsM1dJsM1dLsM1dG8sLṀduz=0 =
df1
dM1

, s3.11d

which is an equation determiningM1. Similarly, the two bulk
conditions yield

U ]A
]Ṁ
U

z=±`

= WsM±`dJsM±`dLsM±`dG8sLṀ±`d = 0;

s3.12d

but sinceWsM±`d=0 these conditions should hold automati-

cally provided thatJsM±`d, LsM±`d, andG8sLṀ±`d do not
diverge. We will see below that these functions have nice
behavior so that we may forget the bulk conditions.

Far away from the wall or the interfaces, in the infinite
and semi-infinite cases, one should see only the bulk behav-
ior of the system. Hence, it is natural to require

Mszd → M±`, Ṁszd → 0, asuzu → `. s3.13d

BecauseAsM±` ,0d=0 the constantC in the first integral
(3.10) must thus vanish. Then using the postulate(3.4) one is
led to

x ; LsMdṀ =
1 + JsMdGsxd

JsMdG8sxd
, s3.14d

which represents a differential equation for the equilibrium
profile Meqszd.
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In order to devise appropriate expressions forAsM ,Ṁd
which generalize the earlier de Gennes–Fisher theory[29],
applicable only atT=Tc, Fisher and Upton[6] introduced the
following desirable physical features or desiderata:

A. The correct, non-classical critical exponents should be
embodied, both ind=2 and ind=3. Conversely, a reduction
to van der Waals or Landau theory should be implied when-
ever the classical critical exponents are assumed.

B. Near the critical point, all thermodynamic functions
should satisfy the scaling and analyticity requirements: in
particular, singularities(or nonanalyticities) should appear
only at bulk criticality, i.e., whent=h=M`=0.

C. For the semi-infinite system, the critical-point decay of
the profile should behave in accordance with scaling as
[29,30]

Mcszd , z−b/n. s3.15d

D. When two plates separated by a finite distanceL are
immersed in a critical system, the order parameter decay
(3.15) should have a correction factor so that

Mcszd , z−b/nf1 + j2sz/Ldd* + ¯ g, L → `, s3.16d

whered* = s2−ad /n and j2 is some coefficient. This predic-
tion of the de Gennes–Fisher theory[29] has been verified by
several analyses including exact Ising model calculations for
d=2 [5,6] and field-theoretic calculations ine=4−d dimen-
sions[31–33].

E. Away from criticality, the order parameter should al-
ways decay exponentially

DMszd ; Mszd − M` , e−z/j, z→ `, s3.17d

where, clearly,jsT,hd denotes thetrue correlation length,j`,
but for brevity we will neglect the subscript̀. (Note again
that we are assuming the absence of power-law forces or the
likelihood that, if present, they do not enter explicitly into
the asymptotic scaling functions.)

F. For a finite critical slab, in the same situation asD, the
critical profile will exhibit a minimumfor similar boundary
conditions satisfyingMsz=0d, Msz=Ld.0, or azerofor op-
posing boundary conditionsMsz=0d.0 and Msz=Ld,0
[34]. It is expected that this profile,Mcszd, behaves analyti-
cally nearz=z0 as

Mcszd = k1sz− z0dl1f1 + k2sz− z0dl2 + ¯ g, s3.18d

whereF(i) l1=0 for the similar case, orl1=1 for the oppos-
ing case;F(ii) for the further exponents, one should have
l2=2, l4=4, etc.

G. Away from criticality a square-gradient expansion in
the local free energy functional is expected to be correct and
so should be reproduced by a satisfactory theory.

H. To describe adsorption on a wall atz=0, the theory
should be consistent with the thermodynamic relation

G ; E
0

`

DMszddz= − S ]S

]h
D

T
, s3.19d

whereS is the wall (or surface) free energy.
I . The order parameter profileMsz;T,h,g;Ld should be

analytic in all noncritical regions.(Compare withB above.)

The starting point of the Fisher-Upton theory is the de
Gennes–Fisher(dGF) ansatz[29] for T=Tc which in the gen-
eral expression(3.4) is given by[5,6],

J = const, LsMd = jsMd/M, Gsxd = uxu2−h̃,

with h̃ = 2h/sd *+ hd. s3.20d

This form satisfiesA –D andF(i). However, the dGF theory
applies onlyat criticality. The extension proposed by Fisher
and Upton(EdGF) usesxsM ,Td=s]M /]hdT and postulates

J = 1, LsM ;T,h`,gd = Îj2sM,Td/2xsM,TdWsM ;T,h`d.

s3.21d

In order to satisfyE, one finds that the condition

Ĝs1d = 1 with Ĝsxd ; xG8sxd − Gsxd,

s3.22d

must be satisfied. Also, in order to satisfyF, Gsxd should
behave as

Gsxd = G0 + G`uxu2−h̃ f1 + l1x
−t + l2x

−2t + ¯ g,

with t = 2b/sb + nd. s3.23d

Finally, for smallx→0 the validity of a gradient expansion,
G, can be seen to require[5,6]

Gsxd = x2 + G2x
4 + G4x

6 + ¯ . s3.24d

Using the EdGF postulate(3.21) and the condition(3.22),
the solution of the general profile equation(3.14) reduces to
x= ±1, or

Ṁ = ± 1/LsMd, s3.25d

where the signs6 must be chosen appropriately. Hereafter,
we take the1 sign, for an increasing profile asz→ +`. The
wall free energy then follows from(3.5) as

S = DF fMeqszdg/A = f1 +Gs1dgE
0

`

dz WsMd + f1sM1d,

s3.26d

where (3.3), (3.21), and (3.25), andGs−xd=Gsxd have been
used. Using(3.25) once again, one can rewrite the semi-
infinite integral as

S = f1 +Gs1dgE
M1

M`

dM WsMdLsMd + f1sM1d. s3.27d

Now the thermodynamic consistency condition,H, leads
to [6]

1 +Gs1d = 2 or Gs1d = 1. s3.28d

It is remarkable that both the profile and the wall or interfa-
cial free energy,SsT,hd, do not depend on the details ofGsxd
[6]. However, one must note that the EdGF ansatz fails to
satisfy I in certain situations[6].

In order to repair this last problem, a generalized de
Gennes–Fisher ansatz(GdGF) was devised[6]. It satisfies all

S.-Y. ZINN AND M. E. FISHER PHYSICAL REVIEW E71, 011601(2005)

011601-6



of the desiderataA –I . However, in contrast to the EdGF
theory, the profile equation, the surface tension formulae,
etc., now depend onGsxd explicitly. In order to obtain quan-
titative results, one must devise a representation forGsxd that
reproduces(3.23) and an analogue of(3.24). One can indeed
achieve this; but the resulting calculations become consider-
ably more complicated than those for the EdGF theory. Ac-
cordingly we have explored numerically only the EdGF for-
mulation.

It must be recognized, however, that both EdGF and
GdGF theories ignore capillary-wave fluctuations of a free
interface, which are important fordø3 [5,6]. Also, as indi-
cated above, the analytic continuations ofWsMd,
j2sMd /2xsMd, etc., into the multi-phase region have no
known meaning in the strict sense of rigorous statistical me-
chanics. However, we expect that both theories will produce
reasonably reliable results when fitted to exactd=2 andd
=4 results and good estimates for variousd=3 parameters,
since they embody many correct physical features.

Indeed, Upton’se=4−d expansion results for the univer-
sal amplitude ratioQ=K+/K− [35] demonstrate this point
quite well. Using the field-theoretic approach to surface criti-
cal phenomena, he obtained the exacte-expansionQ=−Î2
+1.521 257e+Ose2d. Then, using the EdGF theory and the
linear parametric model(which is known to be exact to order
e2 [36,37]), he foundQ=−Î2+1.522 962e+Ose2d. The coef-
ficients ofe differ by only 0.1%.

IV. EdGF EXPRESSIONS FOR SURFACE TENSION NEAR
A CRITICAL ENDPOINT

We now discuss in more explicit detail the application of
the EdGF theory sketched above to the vicinity of a critical
endpoint. Allowing for a boundary term, which will be dis-
cussed further below,(3.27) can be written as

SsT,h,gd = 2E
M1

M`

dMÎWsMdj2sMd/2xsMd + f1sM1d,

s4.1d

where the argumentsh` andT are understood and(3.21) and
(3.28) have been used.

A. Scaling forms

To embody the appropriate nonclassical critical exponents
and satisfy the desiderataA andB we should, clearly, adopt
scaling forms for WsM ;T,h`d and the combination
j2sM ,Td /xsM ,Td. As discussed, the required expressions
must continue analytically(or, at least, sufficiently smoothly)
into the two-phase regionuMu,M0sTd. We should also recall
the necessity for including the further fieldg and the lambda
line T=Tcsgd: see Fig. 1. Following[9], we thus introduce
the dimensionless asymptotic scaling variables

m̃; M/But̃ ub, h̃ ; fh − h0sT,gdg/sB/C+dut̃ ub+g, s4.2d

where the reduced temperature deviation is now[5,6]

t̃ = fT − Tcsgdg/Te, s4.3d

while, for convenience, the tilde onh now denotes the fully
scaled field and, for brevity, the phase boundary term,
h0sT,gd, will usually be neglected below. As usual[8] B
=Bsgd and C+=C+sgd are, respectively, the critical ampli-
tudes of the spontaneous order,M0sT,gd<Butub, and the sus-

ceptibility, x0
+sT,gd=s]M /]hdT.Tc

<C+/ tg, on the h̃=0 sur-
face aboveTcsgd.

Then, following[5,6], we can write the scaling form

j2sM,T,gd/2xsM,T,gd < uMu−hn/bZ±sm̃d, s4.4d

which is crucial in going beyond van der Waals or Landau
square-gradient theory because it introduces the small but
positive (for d,4) exponenth. As above, the subscripts1
and 2 will always denotet̃.0 or ,0, respectively. How-
ever, it must be realized here and below that the scaling
functionsZ+ andZ− and, likewise, others are, in fact, repre-
sentations of asingle, generally analytic scaling function
continuing smoothly throught_0. Thus, more explicitly, to
ensure the analyticity ofj2/2x across the surfaceT=Tcsgd or
t̃=0 (recall B) the scaling functionsZ± must have largem̃
expansions of the form

Z±sm̃d = Z0
`F1 + o

n=1

`

Zn
`s± um̃u−1/bdnG . s4.5d

WhenT→Tcsgd± the terms in the sum clearly generate only
the integral powerst̃ n as required by analyticity whenM
Þ0.

The correct analyticity is most conveniently incorporated
by using the parametric representations of the scaling func-
tions recalled in Sec. I. The only new features required near
a critical endpoint are the replacement oft by t̃, as defined in
(4.3) and allowance for the(smooth) dependence of the non-
universal factorsm0;ms0d and l0; ls0d on the fieldg: see
(1.8) and[38]. With this understanding the parametric forms
(1.8)–(1.10) will be adopted. Then one can express the coef-
ficients entering(4.5) as

Z0
` = a`sucdfmsucdghn/b ; a`csmcdhn/b, s4.6d

Z1
` =

fmc/Bg1/b

kc8
Ha`c8

a`c
+

hn

b

mc8

mc
J , s4.7d

Z2
` =

fmc/Bg2/b

2fkc8g
2 H2s1 + hnd

b

a`c8

a`c

mc8

mc
+

hns2 − b − hnd
b2 Smc8

mc
D2

+
a`c9

a`c
−

a`c8

a`c

kc9

kc8
+

hn

b
Smc8

mc

kc9

kc8
−

mc9

mc
DJ , s4.8d

where the prime denotes differentiation and for brevity we
have useda`c8 ;a8̀ sucd, etc., and so on.

The required scaling form forWsM ;T,h`d must be some-
what more elaborate because of the additional dependence
on h`: see the original definition(2.5). (Indeed, the result
presented in[6] is somewhat misleading since the depen-
dence onh` was suppressed and the expressions given apply
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only for h`=0.) Let us consider, first, the parametric repre-
sentation forW following from (2.6) with the aid of(1.10).
Note that specification ofT andh` implies, via (1.8), para-
metric coordinatesr` and u` (for the corresponding bulk
phase) while the variation ofM at constantT andh` can be
described by coordinatesr andu. Thus from(2.6) and (1.8)
we obtain

Wsr,u;r`,u`d < r2−ansud − r`
2−ansu`d

− r`
Dlsu`dfrbmsud − r`

bmsu`dg. s4.9d

When tÞ0, the relationt=rksud=r`ksu`d leads to the de-
sired form

WsM ;T,h`d < r2−awsu;u`d, s4.10d

where, withh`=r`
Dlsu`d and (1.8) for M, we have

wsu;u`d = nsud − lsu`dmsuduksud/ksu`duD

− fnsu`d − lsu`dmsu`dguksud/ksu`du2−a,

s4.11d

while the singular part of the Helmholtz free energyextended
into the two-phase region, as discussed above, is given by
(1.9) [39].

WhenT=Tc we haveu=u`=uc andwsu ;u`d simplifies to
yield

wc ; wsuc;ucd = bmclc /s2 − ad, s4.12d

wc8 ; Sdw

du
D

u=u`=uc

=
bmclc8 − s1 − bdlcmc8

s1 − ad
. s4.13d

Consequentlywsu ;u`d is continuous and smooth throughT
=Tcsgd (or u=u`=uc). However, the presence of the powers
of D ands2−ad in (4.11) shows that the curvaturesd2w/du 2d
is not continuous throughT=Tcsgd. Nevertheless, this lack of
analyticity of wsu ;u`d is not, of itself, expected to lead to
corresponding nonanalytic behavior in surface free energies,
etc., since the underlying bulk free energies and correlation
lengths do vary analytically.

Now we can expressW in the alternative scaling form

WsM ;T,h`d < uMud+1Y±sm̃;h̃`d s4.14d

where, withA`sh̃`d=−nsu`d / uksu`du2−a, we have

Y±sm̃;h̃`d = A`sh̃`duBm̃u−d −1 − h`fM − M`sT,h`dguMu−d −1

+ Y0
`F1 + o

n=1

`

Yn
`s± um̃u−1/bdnG . s4.15d

[This reduces to the Fisher-Upton expressions whenh`→0
for t̃.0 and t̃,0 although Eq.(7) of [6], should be cor-
rected by changings±uyud−n/b to read s±uyu−1/bdn.] On rear-
ranging forum̃u→` we have

Y±sm̃;h̃`d = Y0
`f1 ± Y1

`um̃u−1/b − sgnsMdYD
`um̃u−D/b

+ Y2−a
` um̃u−s2−ad/b + Y2

`um̃u−2/b ± Y3
`um̃u−3/b + ¯ g,

s4.16d

where the various coefficients are given explicitly by

YD
` ; h`/BdY0

`utuD, s4.17d

Y2−a
` ; fA`sh̃`d + sB2/C+dh̃`m̃`sh̃`dg/Bd+1Y0

`, s4.18d

Y0
` = nc/smcdd+1, s4.19d

Y1
` =

fmc/Bg1/b

kc8
Hnc8

nc
− sd + 1d

mc8

mc
J , s4.20d

Y2
` =

fmc/Bg2/b

2fkc8g
2 H−

2s1 − ad
b

nc8

nc

mc8

mc
+

sb − ads1 + dd
b

Smc8

mc
D2

+
nc9

nc
−

nc8

nc

kc9

kc8
+ s1 + ddSmc8

mc

kc9

kc8
−

mc9

mc
DJ , s4.21d

wheremc9=m9sucd, etc.

B. Representation of the noncritical phase

The scaling forms just discussed provide a satisfactory
representation of the phasesb, g, andbg (see Fig. 1) in the
vicinity of the critical line and critical endpoint, but they
seem to give no account at all of the noncritical or spectator
phase,a. To overcome this draw-back, Fisher and Upton
[5,6] advanced a hypothesis,V, which asserts that as regards
the singular contributions near a critical endpoint, the non-
critical phasea (typically a vapor whenb andg are liquids)
can be replaced by a rigid, inert wall, sayv, characterized
only by a nonzero surface fieldh1 favoring, say, the bulk
critical phaseb.

If one accepts the hypothesisV, one must consider a wall
at, say,z=0 with a corresponding wall free energy as intro-
duced in (3.5) which, following a Landau approach[28],
may be expanded as

f1sM1d = − h1M1 + c2M1
2 + ¯ . s4.22d

The boundary condition(3.11) determiningM1 can be re-
written for the EdGF theory using(3.21), (3.22), and(3.25)
as

df1
dM1

= 2fWj2/2xgM=M1

1/2 . s4.23d

If the surface field near bulk criticality scales ash1

,utuD1 when h1→0, this relation leads toD1= 1
2s2−a−hnd

=m−b. However, it is known that the critical exponents for
surface quantities such ash1 and M1 are characterized by
exponentsD1, b1, etc., thatcannotbe derived simply from
the bulk exponents[40–42]. Hence the exponent relation im-
plied by (4.22) for small h1 is not, in fact, valid. However,
this failure of the local functional theory is of no concern in
the present situation since we wish to keep the fieldh1 fixed
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and nonzero. Hence the correct scaling combinationh1/ ut̃ uD1

divergeswhen t̃→0 and henceh1 does not appear explicitly
in the asymptotic scaling forms. From our viewpoint, then, it
is only necessary to investigatelarge uh1u and, correspond-
ingly, large uM1u. In a more general formulation thea phase
would be represented by an extra(“third” ) minimum in the
extended free-energy functionA†sM ,t ,gd at some valueM
=Mast ,gd with, say,Ma,0 corresponding to a vapor phase:
a fuller investigation[5,6] then shows that the hypothesisV
is justified within EdGF theory. Of course, the effective sur-
face orderM1 does not become indefinitely large in this for-
mulation: however, for the singular behavior near the critical
endpoint we may imagine takingM1 to −`, the negative sign
being chosen so that, as indicated, the densityra of the vapor
phase lies below the critical densityrc (corresponding to
M =0) so that the wall fieldh1 should induce a negative value
of M. This limit entails, as will now be discussed, the sub-
traction of appropriate leading terms that would otherwise
appear as divergencies but which, in reality, contribute only
to noncritical “background” terms.

C. Implications of an unbounded surface field

To use the integral expression(4.1) for the surface tension
in the limit whereh1 and, hence,M1 remain finite so that the
scaled variablem̃,M / utub becomes large near the wall atz
=0 when t→0, we need to examine the integrand. When
um̃u→` we find

FWsMd
j2sMd
2xsMdG1/2

= uMusm−bd/bsY0
`Z0

`d1/2H1 +
sY1

` + Z1
`dt

2uM/Bu1/b

− sgnsMd
h`/BdY0

`

2uM/Bud
+

Y2−a
` utu2−a

2uM/Bud+1

+
f4sY2

` + Z2
`d − sY1

` − Z1
`d2gt2

8uM/Bu2/b

− sgnsMd
sZ1

` − Y1
`dh`t/BdY0

`

4uM/Bu1/b+d

+
sZ1

` − Y1
`dY2−a

` tutu2−a

4uM/Bu1/b+d+1 + Osum̃u−3/bdJ .

s4.24d

On integration the leading termuMusm−bd/b yields uM1um/b

which diverges whenM1→−` sincem /b.0. Similarly, the
second term yields a divergence whensm−1d /b.0, which
applies whend.2. The third term givesuM1usm−Dd/b which
vanishes in the limitM1→−` sincem,D for d=3. How-
ever, whend=4 it diverges as lnuM1u. Higher order terms do
not yield any divergencies whenM1→−`. Hence, to remove
the divergence in the integral whenM1→−` for 2ødø4,
the first three terms must be subtracted.

When M`.0 the integral in(4.1) runs throughM =0
which is problematical because the piece to be subtracted is
singular atM =0. To avoid this, we split the integral at an
arbitrary pointM * ,0 and make the subtraction only in the
integral fromM1 to M*: of course, the values ofM* should
not affect the final results. Finally, the subtracted form of the

surface tension expression(4.1) can be written

Sst,h`;M1d = I1 + I2 + I3sM*d − I3sM1d + f1sM1d,

s4.25d

where the various contributions follow from

I1 = 2E
M*,0

M`

dMfWsMdj2sMd/2xsMdg1/2, s4.26d

I2 = 2E
M1

M*

dMFhWsMdj2sMd/2xsMdj1/2 − sY0
`Z0

`d1/2uMum/b−1

3H1 +
sY1

` + Z1
`dt

2uM/Bu1/b +
h`/BdY0

`

2uM/Bud JG , s4.27d

I3sM1d = 2sY0
`Z0

`d1/2EM1

dMuMum/b−1

3F1 +
sY1

` + Z1
`dt

2uM/Bu1/b +
h`/BdY0

`

2uM/Bud G . s4.28d

The third, indefinite integral, which together withf1sM1d
contains all divergences in the limitM1→−`, can be per-
formed analytically yielding

I3sMd = − 2sY0
`Z0

`d1/2F s− Mdm/b

m/b
+

sY1
` + Z1

`dB1/bt

2sm − 1d/b
s− Mdsm−1d/b

+
h`

2Y0
`Hbs− Mdm/b−d/sm − Dd, d , 4

lnfs− Md/Br`
bg, d = 4

JG , s4.29d

where ford=4 we have made the argument of the logarithm
dimensionless and scale-free; this is harmless because the
extra lnsBr`

bd term amounts merely to an additive constant.

D. Singular part of the surface tension

Following the discussion, we now identify the finite, sin-
gular part of the surface tension as

DSst,h`d = I1 + I2 + I3
* with I3

* ; I3sM*d, s4.30d

where the limitM1→` in any remainingM1-dependence is
to be understood. Note, furthermore, that whend,4, the
diverging parts that have been subtracted vary only linearly
with t. As mentioned, they may thus be regarded as a part of
the common analytic background,S0sTd, for the surface ten-
sion: see(1.2) and (1.3). In identifying DS for d=4 there is
some unavoidable arbitrariness associated with the introduc-
tion of the lnsBr`

bd term: but this is of little significance.
Finally, to employ the parametric representations, we

change the integration variable fromM to u in the integrals
I1 and I2. From (1.8), we have

S ]M

]u
D

t
= sgnstd

ksudm8sud − bk8sudmsud
uksudub+1 utub s4.31d

and on definingu* ,0 via

M * / utub = msu * d/uksu * dub s4.32d

we find
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I1 = 2 sgnstdutumE
u*

u`

du
ksudm8sud − bk8sudmsud

uksudum+1
Îa`sudwsud,

s4.33d

I2 = 2 sgnstdutumE
−uc

u*

du
ksudm8sud − bk8sudmsud

uksudum+1 FÎa`sudwsud

− sY0
`Z0

`d1/2umsudum/b−1H1 +
sY1

` + Z1
`dksud

2umsud/Bu1/b

+
YD

`uksuduD

2umsud/BudJG , s4.34d

wherewsud is given by(4.11) (for fixed u`), while I3sM * d
can be written as

I3
* = − 2sY0

`Z0
`d1/2utumBm/bsy * d−mFb

m
+ sgnstd

sY1
` + Z1

`dy*

2sm − 1d/b

+
YD

`

2
H bsy * dD/sm − Dd, d , 4

bsy * dmlnsuk`u/y * d, d = 4
JG , s4.35d

where y* = uksu* duf−msu* d /Bg−1/b. It is to be understood
that, belowTc, the integralI1 must be interpreted aseu*

u`

=eu*
−u0+eu0

u` since, by our periodic parametric construction,
u= +u0 andu=−u0 are identified together withM =0.

These expressions forI1, I2, and I3
* together with(4.30)

for DSst ,h`d constitute our explicit results for the singular
part of the surface tension. Note thatM1, the boundary value
of the profile on the wall that stands in for thea phase, does
not enter these expressions. On the other hand the arbitrary
valueu* does appear; however, the totalI1+ I2+ I3

* should be
independent ofu* and this may be checked in explicit cal-
culations.

V. PARAMETRIC SCALING FUNCTION FOR d=3

In this section we examine the numerical results for the
parametric scaling functionssud introduced in(1.12) that fol-
low from the EdGF surface tension expressions obtained in
the previous section, specifically(4.30) with (4.33)–(4.35).

A. Numerical evaluation of the scaled tension

Now given the parametric angular functionsksud, msud,
etc., the numerical integration ofI1 in (4.33) can be per-
formed readily. However, there is an endpoint singularity in
I2 in (4.34) at u=−uc where ksud vanishes. On using the
expansion(4.24) for fWj2/2xg1/2 one sees that the singular-
ity has the form uu−ucuf with f=1−a−m=n−1,0 for

d=3. Although divergent, this singularity is integrable and
can be handled by standard techniques[43].

As a check on the numerical calculations, it is useful to
recall the mean-field limit for which exact analytic results
can be obtained. Indeed, from the asymptotic classical equa-
tion of state, namely,

hsM,td = DMsB2t + M2d with D = 1/B2C+,

s5.1d

one can find the auxiliary free energy via(2.6) to obtain

WsMd = 1
2tB2DsM2 − M`

2d + 1
4DsM4 − M`

4d − h`sM − M`d,

s5.2d

in which M`=MsT,h`d is, of course, the appropriate bulk
equilibrium value. Using the EdGF formulation and taking
j2/2x= 1

2J0 [see (2.8)], the critical surface tension can be
calculated analytically, yielding

Sbug = 2E
−M0sTd

M0sTd

dMfWsMdj2/2xg1/2 = 2
3
Î2J0/B

2C+M0
3sTd,

s5.3d

from which the amplitudeK defined in(1.1) is

K = 2
3K0 with K0 = Î2J0B

4/C+. s5.4d

Similarly, the amplitudesK± for the noncritical surface ten-
sion can be calculated using the subtraction scheme dis-
cussed above; they are found to be

K+ = − 1
3
Î2K0, K− = 1

3K0, s5.5d

which values confirm the universal amplitude ratiosP andQ
stated in(1.6).

For the numerical results presented below we have used
the extended sine model expounded in[9], specifically in
Eqs.(5.6) and (7.4) with (6.1) and (4.4). The numerical pa-
rameter values ford=3 are given in Eqs.(6.2) and (7.5) of
Ref. [9]. In light of more recent estimates for the critical
exponents and universal amplitude ratios ofd=3 Ising mod-
els [44–46], the model parameters should, ideally, be up-
dated. However, the resulting changes could induce only
rather small effects. Thus the new estimatesn.0.6302 and
g.1.2375[45] differ from the adopted values of[9] by only
0.16% and 0.28%, respectively. The universal amplitude ra-
tio estimates f 1

+/ f 1
−=1.963±8 andC+/C−=4.762±8 [45]

agree well with those used in[9] lying within the uncertainty
ranges although their central values are shifted by 0.15% and
3.8%, respectively. Furthermore, it has been shown via
parameter-sensitivity checks that the associated variations in
universal ratios are less than 5%[9]. Thus the accepted pa-
rameter values from[9] are perfectly reasonable for the nu-
merical aspects of the calculations reported here.

The computation may be set up to generate the mean-field
results applicable whend.4: see Appendix D of Ref.[17]
for the appropriate parameter values. Our numerical values
for the mean-field case agree up to eight digits and the lack
of any dependence onu* was verified.[For convenience the
valuesu* =−3uc/4 for 0øu`,uc and u* =−suc+u0d /2 for
uc,u`øu0 were adopted[17].] In d=3 dimensions the
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value of u* was varied from −0.05 to −0.26 for a sample
value of u` near uc: no change inssud was found within
eight-digit precision.

B. Calculated scaling functions

Our calculations may be summarized by presenting the
angular functionssud for the surface tension. For the purpose
of normalization, we employ

s0 = sa`l0m0
3d1/2, s5.6d

which has the same units as surface tension. Figure 2 pre-
sents a plot ofssud for d=4. One sees that, owing to the wall
dependence(embodied inM1→−`), ssud is not symmetric
with respect tou=0. Notice also thatssud varies perfectly
smoothly across the critical isotherm valuesu= ±uc as it
should.

The qualitative features of the scaling function ind=3
dimensions are the same as ford=4. However, as seen in
Fig. 3, an unexpected, albeit small cusp appears atu=uc. The
presence of the cusp(which is certainly absent whend=4)
implies that there is a line of nonanalyticity along the critical
isotherm t̃=0 when h`.0. This is quite unphysical since
singularities in the thermodynamic functions, including sur-
face quantities, can occur only at the critical pointst ,h`d
=s0,0d. Thus, from the analyticity away from the critical
point, one expects

DSst,h`d = DScsh`d + DS1
±sh`dt + DS2

±sh`dt2 + ¯ ,

s5.7d

when h`Þ0 and t→0±, respectively. However, analysis
shows that the surface tension predicted by the EdGF theory
behaves as

DSst,h`d = DScsh`d + DS1/2
± sh`dutum−1+a/2

+ DS1
±sh`dutum+1−a/2−D + ¯ , h` . 0,

s5.8d

when t→0±: see Appendix A in Ref.[17]. In dù4 one has
m−1+1

2a= 1
2 so one should, in principle, see a square root

cusp then; but such a cusp is absent in Fig. 2. This is because
the amplitudesDS1/2

± sh`d vanish identically in the classical
situation: see Eq.(A.30) of Ref. [17].

It transpires, as we will now explain, that this erroneous
singular behavior appears because the EdGF theory does not
satisfy the desideratumI of Sec. III. More specifically, a zero
of the order parameter profile is not represented correctly
whenT.Tc andh`.0: recall that the order parameter in the
EdGF surface tension integral(4.1) now runs fromM =M1
,0 to M =M`.0 and so passes through the valueM =0
which is critical whenT=Tc or u=uc. Equivalently, the
EdGF surface tension can be represented by a real-space in-
tegral involving the free energyWfMszdg, as in(3.26). Now,
let us focus on the termh`Mszd in WsMd [see(2.5)]; i.e.,
consider the contribution ofedz h̀ Mszd to the surface ten-
sion. In order to find the scaling behavior of the profile near
M =0, we may analyze(3.25) to find (see Appendix B of Ref.
[17] for details)

Mszd ~ thn/2sz− z0d, s5.9d

when z→z0. Evidently the z-dependence is linear as ex-
pected from the analyticity ofMszd whentÞ0. However, by
scalingz varies asj, t−n andh` as tD; thus the scaling be-
havior of the profileMszd nearz=z0 can be estimated leading
to

FIG. 2. The angular scaling functionssud for the surface tension
in d=4 dimensions as given by EdGF theory. Some significant nu-
merical values areuc.0.562 345 andu1.0.667 708 corresponding
to sc/s0=3.120 23, s−c/s0=−0.122 322, s1/s0=0.976 225, and
s−1/s0=0.325 408. Note alsoss0d /s0=−3.306 20[17].

FIG. 3. The calculated angular function for the surface tension
in d=3 dimensions based on EdGF theory and the extended sine
model[9]. The inset clearly shows a cusp atu=uc (i.e., atT=Tc for
h`.0) with a corresponding valuesc/s0=3.91731. The values of
s−c ands±1 are entered in Table I.
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E dz h̀ Mszd , thn/2j2h`E dz

j

sz− z0d
j

, tshn/2d−2n +D.

s5.10d

Note that the second integral is dimensionless and scale-free
and so has been regarded as a fixed number. Via the scaling
relations, the exponentshn /2d−2n+D reduces tom−1
+sa /2d which corresponds to the cusp appearing in(5.8).

Since the correct scaling function should not exhibit such
nonanalyticity, we introduce an interpolation procedure that
smooths out the calculated cusp inssud. The u range, say
fua,ubg, selected for the interpolation is arbitrary. However,
the choicesua,ubd=s0.20,0.35d encompasses the cusp and
seems reasonable. We have used a polynomialPsud of de-
gree 5 which is the minimal order to match the first and
second derivatives at both ends of this interval. The resulting
polynomial for the extended sine model parameters is given
in Eq. (4.4.50) of [17]. It agrees closely with the calculated
values ofssud in the intervals[0.20, 0.26] and [0.32, 0.35];
furthermore, the largest deviation ofPsud from ssud occurs at
the cusp and is only 3%.

From now on, when the distinction matters, we will write
s̄sud for the ameliorated angular function to distinguish it
from ssud that has the cusp atu=uc. Selected numerical val-
ues of s̄sud are given in Table I; values spaced at intervals
Du=0.01 are available in Table 4.1 of[17].

In the previous study of the extended sine model[9], vari-
ous parameter sets near the preferred set in Eq.(6.2) of [9]
were examined in order to check the sensitivity of the uni-
versal amplitude ratios. Here, we also check the sensitivity of
ssud under the variations in the parameter sets considered in
Table I of [9]. As explained in Sec. VII of[9], the optimal
parametersa`0, a`2, etc., for the true correlation length are
determined separately for each set by fitting the universal
ratios Ksf −d2 and aA+sf +dd, f +/ f −, and sC+/Ccdsf c/ f +d2−h.
Then ssud is computed for each parameter set using EdGF
theory.

It must be noted that the value ofu1 depends somewhat
on the parameter set. This implies that the values ofssud
calculated from different parameter sets are not strictly com-
parable. However, the change inu1 occurs only in the third
decimal place. Thus, ignoring the small changes in theu
scale, we have examinedDssud;ssud−ssud0, i.e., the devia-

tions ofssud calculated using the sets 1, 2,…, 6 in Table I of
[9] in place of the preferred set(6.2) of Ref. [9].

The largest deviation occurs atu=u1.0.42; normalized
by the values̄su1d in Table I it is about 3%. In[9] the varia-
tions in the predicted universal ratios associated with the
parameter changes ranged from 0.2% to 5%. Thus, the func-
tion ssud shows only the same level of variation as might
have been anticipated.

Finally, we have also checked the effects onssud of using
“untuned” estimates fora`sud. Indeed it was found in[9] that
the f2/0g Padé approximant fora`sud could not fit the
universal ratio while also fittingf +/ f −, aA+sf +d3, and
sC+/Ccdsf c/c+d2−h. Likewise for the other approximants of
the same order, namely,f1/1g andf0/2g. Hence, it was nec-
essary to introduce thef3/0g approximant. By using the
f2/0g approximant fora`sud, which is representative of the
low-order approximants, we have calculated the angular
functionssu ; f2/0gd with the preferred parameter set(6.2) of
[9]. The difference betweenssu ; f2/0gd andssu ; f3/0gd in the
range −u1øuøuc is very small; indeed, it is invisible on a
plot. However, a large difference of about 30% arises in the
subcritical rangeucøuøu1. This occurs(i) because the ap-
proximantsf2/0g and f3/0g behave quite differently in the
two-phase regionu1ø uuuøu0 (see Fig. 8 of[9]) and (ii )
because the calculation ofssu`d for uc,u`,u1 involves in-
tegration through the two-phase region whereas the range
−u1øu`,uc requires integration only through the one-phase
region in which the approximants are very similar.

VI. NUMERICAL RESULTS
FOR THE SURFACE TENSIONS

Based on the angular scaling functionssud or, where ap-
propriate, the ameliorated versions̄sud, calculated with the
preferred parameter set(6.2) and (7.5) of Ref. [9], we now
describe various theoretical predictions for the interfacial
tension near a critical endpoint.

A. Amplitude ratios

Recall first the surface tension amplitudesK± and K de-
fined in (1.1)–(1.3). On using the parametric form forDS in
(1.12) the surface tension amplitude aboveTc is readily read
off as

TABLE I. Numerical values for the ameliorated angular surface tension scaling functions̄sud in three
dimensions. Note thatuc=0.269 293 andu1=0.422 519[9].

u s̄sud /s0 u s̄sud /s0 u s̄sud /s0 u s̄sud /s0

−u1 1.727 13 −0.20 −1.677 43 0.08 −0.076 19 0.30 4.458 74

−0.40 1.125 36 −0.16 −1.783 25 0.12 0.587 32 0.32 4.792 82

−0.36 0.207 79 −0.12 −1.767 07 0.16 1.355 90 0.34 5.022 93

−0.32 −0.513 65 −0.08 −1.638 86 0.20 2.210 93 0.36 5.121 25

−0.28 −1.055 67 −0.04 −1.405 58 0.24 3.129 71 0.38 5.049 63

−uc −1.173 07 0 −1.069 44 +uc 3.812 64 0.40 4.739 23

−0.24 −1.438 71 0.04 −0.627 87 0.28 4.050 87 +u1 3.806 99
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K+ = ss0d/fks0dgm = ss0d. s6.1d

Owing to the asymmetry ofs̄sud with respect touù0, we
must choose the sign of ±u1 appropriately for zero-field be-
low Tc. In accord with Fig. 1(a), the a ub interface exists
beneathTc when hø0; thus, the amplitudeK− must be
evaluated atu=−u1 yielding

K− = ss− u1d/uksu1dum. s6.2d

Similarly, atu=u1 one obtains the amplitude forDSaug in the
limit h→0+, which via Antonow’s rule is the sumsK+K−d:
thus we have

K = fssu1d − ss− u1dg/uksu1dum. s6.3d

It is also instructive to define corresponding critical sur-
face tension amplitudeson the critical isotherm. Via scaling
one can write

DS < K_
c uhum/D < KM

_uMum/b, s6.4d

where the sub- and superscripts. and , stand forh,M
.0 andh,M ,0, respectively: owing to the asymmetry of
the surface tension with respect toh→−h, this distinction is
essential. For reference we may note thatm /D.0.806 while
m /b=3.85. The parametric representations then yield

K.
c = s̄sucd/ulsucdum/D, K,

c = ss− ucd/ulsucdum/D. s6.5d

Note the appearance ofs̄sud here so that the prediction for
K.

c depends on the amelioration procedure.
The specific reduced surface tension amplitudes predicted

by our EdGF theory with the extended sine model are thence

K+/s0 = − 1.069 44, K−/s0 = 1.281 68, K/s0 = 1.543 44,

K.
c /s0l 0

−m/D = 0.293 755, K,
c /s0l 0

−m/D = − 0.090 382 6,

KM
./s0m0

−m/b = 923.242, KM
,/s0l 0

−m/b = − 284.063,

s6.6d

where we used Table I for thes̄sud values and the extended
sine model values[9]

ksu1d = − 1.266 16, lsucd/l0 = − ls− ucd/l0 = 0.529 162,

msucd/m0 = − ms− ucd/m0 = 0.240 366, s6.7d

while s0 is defined in(5.6) and represents the nonuniversal
surface tension scale.

From Eq.(6.6), one obtains the universal amplitude ratios

P = 0.1375 ± 2, Q = − 0.834 ± 2, s6.8d

where the uncertainties have been estimated by examining
results from the other parameter sets in Table I of Ref.[9]. In
comparison with the preliminary calculations quoted in(1.7),
one sees that our improved estimate forP is about 15%
larger [and still positive in contrast to(1.6)] while the Q
value displays only a 0.5% deviation. These estimates will be
discussed elsewhere[22] in relation to the experimental ob-
servations of Mainzer-Althof and Woermann[20].

For the surface tensions on the critical isotherm, our
analysis generates the universal amplitude ratio predictions

K.
c

K
S B

C+Dm/D

= 3.34 ± 4,
KM

.

K
Bm/b = 5.26 ± 7,

s6.9d
K,

c

K
S B

C+Dm/D

= − 1.029 ± 1,
KM

,

K
Bm/b = − 1.62 ± 2,

where we recall thatB and C+ are defined as in[8]. More
directly we find

K.
c /K,

c = KM
./KM

, = − 3.25 ± 5, s6.10d

which may also be used in analyzing experimental data and
might well be tested in simulations of Ising-type systems.

We plan, as mentioned in the Introduction, to consider the
applications of the present theory to experiments in the fu-
ture [22]; but it should be noted here that the difference in
sign and magnitude of the amplitudesKM

. and KM
, was ex-

plicitly remarked by NWW on the basis of the theory of
Ramos-Gómez and Widom[10], a square-gradient approach
formulated to incorporated=5. [See also Rowlinson and Wi-
dom [1] (pp. 287–293) and our comments following(1.4)
and (2.10) above.] Furthermore, their analysis leads to
KM

. /KM
, .−148/42.−3.52; see [10] p. 614 and [1] Eq.

(9.124). This value is only some 8% larger in magnitude than
found here.

B. Scaling functions

While parametric scaling forms are conceptually and
computationally effective, direct scaling representations, as
in (1.12), are more useful for comparison with existing or
proposed observations. Thus from the angular functions̄sud
we have computed the scaling functionsS±sh̃d: in Fig. 4(a)
these are plotted in terms of the field(or chemical potential)
variableh̃.

In experiments, for example on binary mixtures, the den-
sity deviation s~Md is more readily accessible than the

chemical potential deviations~h̃d. Hence, in practice scaling
plots in terms ofm̃ are more convenient: the corresponding
scaling functions may be defined via

DS < KutumSM
± sm̃d with m̃= M/Butub, s6.11d

while their behavior is shown in Fig. 4(b). The normaliza-
tions adopted in(1.12) and here lead, with Antonow’s rule
(1.4), to the “jump conditions”

S−s0 + d − S−s0 − d = SM
− s1d − SM

− s−1d = 1, s6.12d

that enter belowTc.
Away from the critical point, all bulk and surface quanti-

ties must be analytic unless some phase boundary intervenes.

This is reflected in the smooth behavior ofS+sh̃d for all h̃. In
contrast, there is a jump inS−sh̃d at h̃=0 in accordance with
(6.12): for h̃Þ0, however,S−sh̃d is analytic for allh̃. Similar
considerations apply to the break in theSM

− sm̃d plot seen in
Fig. 4(b). On the critical isothermT=Tc the two branches of
the scaling function,S+sh̃d and S−sh̃d, must join smoothly
when h̃→ ±`; this again is a consequence of the overall
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requirement of analyticity away from the phase boundary.
Hence, the two branches ofS±sh̃d andSM

± sm̃d must both as-
ymptotically approach one another whenh̃→ ±` and m̃
→ ±`: this can be seen easily in Fig. 4(b). Notice that the
dotted line plots labeledT=Tc in Fig. 4 depict only the
asymptotic power-law behavior embodied in(6.4) that cor-

responds in these scaled plots toh̃→ ±`. (It may also be
remarked that the unphysical cusp in the EdGF surface ten-

sion on the critical isotherm forh.0 is located ath̃→ +`;
thus, with or without the cusp, the scaling plots in Fig. 4 look
similar.)

Finally, it should be clear that the scaling function plots in
Fig. 4 may also be read as describing the variation of

DSsT,hd~S±sh̃d=SM
± sm̃d with h and M at fixed values ofT

_Tc. In particular, one may then notice that the isotherms of
DS vs M for T aboveTc will crossthe critical isotherm when
M is positive, and, by continuity, hence also cross one an-
other [22]. This crossing of the surface tension isotherms
above Tc has been anticipated theoretically by Ramos-
Gómez and Widom([10]: see text after their Eq.(3.15) and

Table I) who also point to some experimental evidence of
crossings.

On the other hand the isotherms ofDS vs fh−h0sT,gdg
(which, recalling(4.2) et seq., should replaceh in the figure)
do not cross: see also Fig. 4.10 of[17]. However, in addition
to the displacementh0sT,gd, inclusion of the surface tension
backgroundS0st ,hd will distort naive expectations based on
Fig. 4 when real isotherms for the total interfacial tension are
examined vs density or chemical potential. See Fig. 5(b) be-
low for another aspect of this issue.

It is appropriate to mention here that in their theoretical
analysis of a binary fluid mixture, NWW[14] tacitly as-
sumedsymmetry in the surface tension above and belowTc

by supposingSM
+ sm̃d=SM

− sm̃d: see their Eqs.(2.8) and (2.9)
and Figs. 3 and 10. However, on physical grounds such a
symmetry is quite implausible. Thus, belowTc there are two
distinct fluid phasesb and g favored byh.0 and h,0,
respectively, and a vapor phasea (or wall) favoring theb
phase; but, aboveTc, there is only one fluid phasebg : see
Fig. 1. Hence, one must allow for theT_Tc symmetry
breaking differences seen in Fig. 4. For comparison, one may

FIG. 4. The universal scaling functions predicted by the EdGF

surface tension theory(a) vs the ordering fieldh̃ and(b) vs the order

parameterm̃. Note the lack of symmetry abouth̃=m̃=0 and the
jumps dictated by(6.12).

FIG. 5. Plots of(a) the singular part of the critical endpoint
surface tension as a function of the reduced temperaturet for fixed
values ofM and(b) with the addition of the model background term
S0sT,hd given in (6.13) for the same values ofM.
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recall that for the bulk equation of state when expressed in
terms of m̃ (or in terms of h̃) one also needstwo scaling
functions, sayQ±sm̃d for tù0 and tø0, as is well known;
and, again, the two branches must be analytically related.
However, in the bulk thermodynamics one may accept full
asymptotic symmetry underh̃⇔−h̃ or m̃⇔−m̃ and then em-
ploy just a single function, say, in terms of the variable
t / umu1/b~m̃−1/b. But that symmetry is alsonot applicable to
the surface tension.

Experimentally, binary mixtures are prepared at various
fixed compositions and the surface tension may then be ob-
served as a function of temperature: see, e.g.,[18]. This is
comparable to keeping the order parameterM fixed. Accord-
ingly we present such plots for the EdGF predictions in Fig.
5.

It must be recalled, however, that EdGF theory yields
only the scaling or singular part of the surface tension. Since
the leading power-law of the surface tension,utum, vanishes at
the critical point, the contribution from the analytic back-
ground isnon-negligible. To illustrate this point, we include
in Fig. 5(b) plots for the full surface tension,S=DS+S0,
with an assumedbut reasonably realisticmodelbackground
term, namely,

S0sT,hd/K = 1 − 2t + 5t2, s6.13d

where, for simplicity, only the temperature dependence has
been considered. SinceK+,0 [see(6.6)], the scaling part of
the surface tension aboveTc in zero-field, namely,DSaubg

<K+utum, curves downwards as seen in Fig. 5(a). However, in
Fig. 5(b), the corresponding curvature in the full surface ten-
sion now appears to beupwardsowing to the effects of the
backgroundS0sTd. In fact, the same sign of apparent curva-
ture is observed in the NWW experiment on isobutyric
acid and water[14]; this clearly demonstrates the importance
of the backgroundS0sT,hd. The significance of also intro-
ducing integral powers ofh̃ in (6.12) will be discussed else-
where[22].

C. The complete-wetting singularity

It has been predicted by Cahn[26] that a logarithmic sin-
gularity should occur in the slope ofDSaugsT,hd on ap-
proaching the coexistence curve belowTc , i.e., by takingh̃
→0+ (along any generic, nontangential path). This logarith-
mic singularity is associated with the complete-wetting tran-
sition that, in turn, is reflected in Antonow’s rule. Recall that
when h̃=0, the two liquid phasesb and g coexist with the
vapor phasea. Thus, whenh̃→0+ while a and g phases
coexist [i.e., on the surfaces in Fig. 1(a)], the b phase of
intermediate density emerges and spreads over(or wets) the
a ug interface. Indeed, one can explicitly show that such a
singularity arises within the EdGF theory: see Appendix C of
[17]. The analysis establishes that the coefficient of the lnh̃`

term in s]DS /]h̃d is positive, which is fully consistent with
the numerical calculations presented in Fig. 6: these demon-
strate a lnsT−T0d−1 singularity in the derivative of the sur-
face tension whenT approaches the coexistence curve at
fixed densityr.rc, i.e., M .0.

Although the presence of a logarithmic singularity in
Saugshd on approaching a wet interface may be regarded as
well established theoretically, an important caveat is that in
all cases the corresponding theoretical analysis entails the
assumption that interactions within the fluids are entirely of a
short-range character, i.e., decaying faster than any power-
law. This, of course, precludes slowly decaying interaction
potentials such as the 1/r6 form that characterizes the van
der Waals intermolecular forces prevalent in real molecular
fluids. At fixed temperatureT in the rangeTW,T,Tc van
der Waals forces should generate ash−h0d−1/3 singularity in
Saugshd. Thus, without special allowance for power-law po-
tentials, a local functional analysis such as our EdGF theory
must be suspect in relation to real fluid systems unless short
range interactions happen to dominate for, say, reasons of
symmetry, or accidental near-cancellation, etc.

On the other hand, in the case ofd=3 bulk critical behav-
ior it is known that 1/r6 potentials enter the asymptotic scal-
ing forms only as irrelevant corrections-to-scaling(even
though these may bedangerously irrelevantfor certain quan-
tities such as correlation functions at long distances) [47]. It

FIG. 6. (a) Temperature derivative ofDS̄;DS /K at fixed M
(with values the same as in Fig. 5) revealing a logarithmic singu-
larity when M is positive andt s,0d approaches the coexistence
curve;(b) semilogarithmic plot of the derivative of the scaling func-

tion S−sh̃d beneathTc: the straight line is a guide to the eyes while
the dots represent the derivative.
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is possible that a similar situation pertains in the case of the
surface tensions near a critical endpoint in which case a local
functional theory might still prove asymptotically adequate.
To our knowledge, however, this issue remains open and, as
yet, a singularity in the derivative of the surface tension
SaugsT,hd near a critical endpoint has not been identified
experimentally: see, e.g.,[14].

VII. SUMMARY

As illustrated in Fig. 1, binary fluid mixtures exhibit criti-
cal endpoints where, in the three-dimensional thermody-
namic field space, a critical line of mixing transitions termi-
nates at a first-order transition surface between the liquid
phases and their common vapor phase. At such critical end-
points, the interfacial or surface tensionSsT,hd becomes sin-
gular in both temperature and ordering fieldh. Our aim here
has been to calculate the scaling functions describing the
asymptotic behavior of the surface tensions through the
whole neighborhood of the critical endpoint.

To this end, the local functional theory of Fisher and Up-
ton [5,6] in the extended de Gennes–Fisher(EdGF) version
of the theory, has been exploited because it captures many
significant physical features tied to the nonclassical values of
the relevant critical exponents, especiallyh.0. As seen in
(4.1), the EdGF theory requires suitable scaling representa-
tions for the auxiliary free energyWsM ;T,h` ,gd and for the
correlation length factorj2/2x. To generate these, we have
used the extended sine model of Ref.[9], since it embodies
the appropriate analytic behavior, extends smoothly through
the two-phase region belowTc, and fits the values of many
important universal amplitude ratios.

However, both numerical and analytical[17] calculations
lead to the prediction of a small but unphysical cusp in the
variation of the surface tensionSsT,hd on crossing the criti-
cal isotherm at positiveh, i.e., on entering theg region of the
phase diagram: see Fig. 1(a). This unanticipated behavior
represents a shortcoming of the EdGF theory that is found to
originate in the predicted variation of the order parameter
profile, Mszd, in the immediate vicinity ofT=Tc when it
passes through the critical valueMsz0d=0. An improved lo-
cal functional theory might avoid this difficulty. To that end,

it may be worthwhile to investigate the generalized or GdGF
theory[6]. However, the undesirable feature may still remain
since we are inclined to believe that the origin of the cusp is
associated rather directly with the single, scalar order-
parameter formulation: both EdGF and GdGF theories em-
ploy a simple scalar order parameter which cannot avoid
“local criticality” when the interfacial profile crosses from
one phase to another atT=Tc. In response to this observa-
tion, Mikheev and Fisher[48] have addressed the formula-
tion of two-order-parameter theories in which, in particular,
the local energy fluctuation, as a second “critical density,”
plays a role; but a practicable scheme of approximation has
not so far been achieved.

Nevertheless, the application of EdGF theory to other
properties of fluid interfaces and surfaces, seems worthwhile
(e.g.,[13]) and in the present case the cusp inssud, the scal-
ing function for the surface tension, produces a deviation of
only a few percent from the naturally interpolated analytic
variation. Accordingly, for numerical purposes we have
adopted a smoothing procedure that removes the cusp; this
yields the ameliorated angular functions̄sud that is recorded
numerically in Table I.

On this basis the universal scaling functionsS±sh̃d and
SM

± sm̃d have been calculated: see Figs. 4 and 5 which reveal
significant features of the anticipated variation of the surface
tensionSsT,hd. In particular, the role of the analytic back-
ground contributionS0sT,hd can be assessed. Together with
the improved theoretical predictions(6.8) for the universal
surface tension amplitude ratios,P andQ, these results will
be used elsewhere[22] to reanalyze the experimental data of
Nagarajan, Webb, and Widom[14] and to compare with
other experiments[18–20].
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